Każdy, kto choć raz próbował dowiedzieć się, dlaczego ulubiony laptop zachowuje się jak piecyk do pizzy podczas zwykłych prac domowych, wie, że elektronika i ciepło to para niesamowicie ambiwalentna. Z jednej strony to tak, jakby próbować łączyć kota i wodę – o ile jedno i drugie to doskonałe źródło psot, to ich nieodpowiednie połączenie zwykle kończy się osłabieniem nerwów. Tak właśnie działa elektronika – po pewnym czasie układy zaczynają się nagrzewać, co z jednej strony jest zupełnie normalne, ale może również prowadzić do poważnych problemów. Z drugiej strony, współczesne urządzenia elektroniczne projektowane są tak, aby generowały jak najmniej ciepła, więc jeżeli coś nadmiernie się nagrzewa, to oznacza kłopoty.
Nie dajmy się zwariować – w świecie diagnostyki elektroniki mamy narzędzie, które pomaga nam rozwiązać tę gorącą zagadkę. To jak Sherlock Holmes z lupą w świecie elektroniki w sukurs przychodzi nam termowizja. To technologia, która pozwala zobaczyć, co dzieje się na gorąco w naszych urządzeniach. I to literalnie – kamery termowizyjne pozwalają zobrazować rozkład temperatur np. na powierzchni płytki drukowanej i umieszczonych na niej elementów elektronicznych. W zaprezentowanym artykule przyjrzymy się, dlaczego termowizja jest tak ważna, jak działa i jakie cuda elektroniczne można nią odkryć, a także, po jakie urządzenia możemy sięgnąć, aby nie zurzyć na to całego budżetu.
Kiedy elektronika jest gorąca...
Zastanówmy się przez chwilę nad tym, co się dzieje, gdy przykładowy obwód elektroniczny zaczyna się przegrzewać. Po pierwsze, odczuwamy to dosłownie na własnej skórze – np. nasz laptop staje się gorący jak patelnia, ale to dopiero początek. Nagrzewanie elektroniki może prowadzić do wielu problemów. Komponenty mogą ulegać degradacji, tracić sprawność, a w niektórych przypadkach nawet uszkodzić się na skutek przegrzania. To może skutkować awariami, utratą danych czy nawet poważniejszymi problemami. Działa to także w drugą stronę – jeśli jakiś element nie działa poprawnie, na ogół możemy dostrzec to badając jego temperaturę – będzie on nadmiernie ciepły, albo wręcz przeciwnie – nie będzie się w ogóle rozgrzewał.
Jak działa termowizja
Kamera termowizyjna to urządzenie, które mierzy temperatury obrazując otoczenie w zakresie promieniowania podczerwonego, podobnie jak zwykła kamera tworzy obraz za pomocą światła widzialnego (promieniowania elektromagnetycznego w zakresie od 400 nm do 700 nm). Kamery podczerwone są wrażliwe na promieniowanie o długości fal od około 1 000 nm (1 μm) do około 14 000 nm (14 μm).
Zasada działania tych kamer jest bardzo prosta. Wystarczy spojrzeć na widmo promieniowania tzw. ciała doskonale czarnego. Spektrum promieniowania ciała doskonale czarnego zmienia się w zależności od temperatury tego ciała. Dla temperatur typowo spotykanych w elektronice (od 300 K (ok. 27°C) do 450 K (177°C)) widmo to maksimum ma w zakresie od ok. 10 μm dla niższej z temperatur, do ok. 4 μm dla wyższej.
Ciało doskonale czarne emituje promieniowanie na skutek temperatury wyższej niż zero absolutne. Zmienia się także intensywność – im wyższa temperatura ciała, tym większa jest intensywność promieniowania w całym spektrum. Zależność tę opisuje tzw. prawo Stefana-Boltzmana. Wzrost temperatury powoduje przesunięcie maksimum intensywności ku krótszym falom, to tak zwane przesunięcia Wiena. Prawo Stefana-Boltzmanna opisuje całkowitą moc i widmo (rozkład Plancka) promieniowania emitowanego przez ciało doskonale czarne; w ogólności mówi ono, że natężenie tego promieniowania jest proporcjonalne do czwartej potęgi temperatury emitującego ciała.
Ogólnie rzecz biorąc, im wyższa jest temperatura obiektu, tym więcej promieniowania podczerwonego jest emitowane – zgodnie z zasadami opisującymi promieniowanie ciała doskonale czarnego. Specjalna kamera może wykryć to promieniowanie w sposób podobny do zwykłej kamery, która wykrywa światło widzialne. Działa nawet w całkowitej ciemności, ponieważ czuła jest na promieniowanie podczerwone, które emitowane jest przez ciało doskonale czarne, szczególnie dla niższych temperatur. Znaczną część tego promieniowania emitowana jest w zakresie podczerwieni, powyżej 10 μm, dlatego też do pomiaru czy obrazowania temperatury stosuje się detektory pracujące w zakresie od 7 µm do 14 μm.