- zasilanie 2,8…3,6 V z uruchamianego układu; zewnętrzny zasilacz 8…15 V; USB np. PowerBank; zewnętrzne napięcie 5 V,
- pobór prądu przy zasilaniu 5 V 35…50 mA,
- wyświetlacz OLED kolorowy 16-bit 96×64 punkty,
- trzy diody LED sygnalizujące poziom niski, wysoki, impuls,
- sygnalizacja na LCD i LED poziomu „H”, „L”, stanu trzeciego (OC, OD), stanu zabronionego,
- dowolnie ustawiane poziomy logiczne w zakresie 5…95% Vcc,
- wykrywanie zbocza narastającego/opadającego przebiegu do 45…50 MHz,
- pomiar częstotliwości 0,1 Hz…36 MHz, 6 zakresów pomiarowych przełączanych automatycznie po dwa dla zakresu Hz, kHz, MHz, rozdzielczość 0,01 Hz/1 Hz/1 kHz,
- pomiar czasu trwania impulsu/okresu 27 ns…2 s, 2 zakresy (ms, ms) rozdzielczość 27 ns/1 ms,
- dla sygnałów poniżej 1 kHz wyliczanie częstotliwości na podstawie okresu sygnału,
- wyliczanie wypełnienia impulsu, wyświetlanie w formie graficznej i liczbowej,
- funkcja HOLD,
- oscyloskop 1 Ms/s, zakres napięć 0…Vcc, 10 zakresów podstawy czasu: od 1 kS/s do 1 MS/s,
- USB do konfiguracji parametrów pracy, zapamiętywanie nastaw,
- PCB przystosowane do obudowy KM-80.
Jednymi z pierwszych układów cyfrowych były układy serii TTL zasilane napięciem 5 V ±5%. Za niski poziom logiczny przyjmują stan o napięciu z zakresu 0 do 0,8 V, a logiczna jedyna to stan wysoki, o napięciu 2,4 V do 5 V. Zakres ten odnosi się do napięć od strony wejść układów, na wyjściach zakres jest mniejszy. Napięcia z zakresu ponad 0,8 V a mniej niż 2,4 V są traktowane jako poziom zabroniony. Producent układu, nie gwarantuje jak układ zinterpretuje takie napięcie, czy jako poziom niski czy wysoki.
Wyjątek stanowią układy z wejściem Schmitta, które mają histerezę. Napięcia z zakresu 1,5...2 V są interpretowane jako poziom „H”, 0,6...1,1 V jako „L”. W zakresie napięć, w którym bramka Schmitta nie interpretuje poziomu „H” ani „L”, niejako pamięta poprzedni stan. Jeśli więc bramka była w stanie „H” a napięcie spadnie poniżej 1,5...2 V bramka nadal będzie „widzieć” stan „H” do czasu aż napięcie na wejściu bramki spadnie do 0,6..1,1 V. Podobna reguła obowiązuje przy wzroście napięcia, gdy wejście było w stanie „L”, napięcie do 1,5..2 V bramka interpretuje nadal jako „L”.
Nieco inne są poziomy napięć w układach CMOS. Tam napięcie z zakresu 0...30% napięcia zasilania to poziom „L”, 70...100% napięcia zasilania to poziom „H”. Progi przełączania w mikrokontrolerach mogą być jednak inne, np. 45% i 55%.
Z powyższych informacji wynika, że poziomy logiczne można zbadać woltomierzem. Niestety, woltomierz wykonuje ok. 3, a maksymalnie 10 pomiarów na sekundę, a układ TTL może przełączać się z częstotliwością 25 MHz czyli 25 milionów razy!
Bez oscyloskopu nie da się więc nic zrobić, niestety, w latach świetności układów TTL, oscyloskop był urządzeniem bardzo drogim. Nawet w dzisiejszych czasach, gdy realny koszt nabycia oscyloskopu zmniejszył się jakieś sto razy, wielu początkujących nie stać na taki wydatek.
Alternatywnym rozwiązaniem jest sonda cyfrowa. Prawie każde czasopismo o tematyce elektronicznej opisywało konstrukcję takiej sondy, ale nawet komercyjne przyrządy, mają poważne wady. Nie nadają się lub mają duże ograniczenia w przypadku testowania współczesnych szybkich układów zasilanych napięciem 3,3 V lub niższym. To zmusiło mnie do zbudowania nowszej wersji o niespotykanych w sondach właściwościach. Warto wspomnieć, że koszt sondy jest porównywalny do produkowanej seryjnie SL625, która nie potrafi odróżnić krótkich impulsów od przebiegu prostokątnego ani poziomu wysokiego od wyjścia z otwartym kolektorem. O pomiarze częstotliwości, czasu i oscyloskopie nie ma co marzyć.