- Pomiar za pomocą czujników STS-6
- Wynik pomiaru prezentowany na czytelnym wyświetlaczu LCD
- Zasilanie z baterii akumulatorów NiMH (2×AA)
- Wbudowana ładowarka akumulatorów
- Wbudowana przetwornica podwyższająca napięcie
Opisany poniżej licznik jest pod tym względem znacznie lepszy, ale niestety konsekwencją postawienia na czułość są duże wymiary całości – sam obszar rejestrujący promieniowanie ma 60 mm×180 mm. Dla warszawskiego promieniowania tła rejestruje on ok. 250 zliczeń na minutę, doskonale reaguje nawet na mało aktywne minerały i pozwala na uwolnienie wielu osób od przykrych fobii związanych z promieniowaniem jonizującym.
Oczywiste jest, że do budowy niezbędne są czujniki (liczniki), które trzeba je jakoś pozyskać zanim przejdzie się do całej reszty. Nie jest to produkt popularny, ale sporo takich komponentów spotyka się na portalach aukcyjnych i w sklepach internetowych.
Zasilacz wysokiego napięcia
Liczniki Geigera-Muellera wymagają zasilania napięciem stałym o wartości zależnej od konkretnego typu lampy. Dla STS-6 i krajowego odpowiednika BOI-53 napięcie to wynosi 390…400 V, stąd za każdym razem główną częścią licznika jest przetwornica zamieniająca niskie napięcie, np. dostarczane przez baterię na taką wysoką wartość. Pomysłów na realizację tego bloku jest bez liku, ale wiele z dostępnych publicznie schematów ideowych ma blok WN zrealizowany najczęściej za pomocą transformatora impulsowego i przetwornicy zaporowej. Napięcie wyjściowe takiego zasilacza zwykle jest niestabilizowane, a transformator nie jest dostępny jako element gotowy. I tym samym od razu konstrukcja się komplikuje. Co więcej taki zasilacz ma wielokrotnie za dużą moc w stosunku do potrzeb, co przy zasilaniu bateryjnym jest wielką wadą.
Wykorzystany w prezentowanym projekcie zasilacz wysokiego napięcia jest wolny od tych wymienionych usterek, ma wystarczającą wydajność prądową do zasilania trzech połączonych równolegle liczników GM, a dodatkowo charakteryzuje się wysoką sprawnością, dzięki czemu jest najlepszym rozwiązaniem dla urządzeń zasilanych z baterii. Bazuje na dostępnym w handlu typowym dławiku i układzie powielacza zasilanego z generatora PWM. Innymi słowy nie trzeba czegokolwiek nawijać i dobierać.
Sercem zasilacza jest generator zbudowany na bramce F układu IC4 74LS14 D (6 inwerterów z przerzutnikiem Schmitta). Pojemność C16 jest ładowana prądem o wartości regulowanej za pomocą napięcia na wyjściu wzmacniacza operacyjnego IC5. W momencie, gdy napięcie na wejściu bramki F przekroczy wartość progową napięcie na wyjściu zmienia wartość na logiczną jedynkę, a za pomocą pięciu połączonych równolegle pozostałych inwerterów wchodzących w skład układu IC4 podawane jest na bramkę tranzystora MOSFET T4. Przewodzący tranzystor powoduje przepływ prądu przez dławik L1.
Jednocześnie za pomocą diody D13 i rezystora R30 poziom niski na wyjściu bramki F IC4 powoduje rozładowanie kondensatora C16, przez co po krótkiej chwili (wynikającej ze stałej czasowej rezystora R30 i kondensatora C16) impuls sterujący tranzystor T4 zanika i układ wraca ponownie do ładowania C16 z wyjścia wzmacniacza IC5 poprzez rezystor R32. Formalnie całość tworzy generator, w którym czas trwania impulsu sterującego tranzystorem T4 jest stała, a czas przerwy pomiędzy kolejnymi impulsami wyznaczany jest wartością napięcia wyjściowego na wyjściu układu IC5, które determinuje tempo ładowania pojemności C16. Częstotliwość tak skonstruowanego generatora jest zmienna i przekracza 100 kiloherców. Jak widać zastosowana regulacja jest nietypowa, ale prosta i doskonale się sprawdza w tym zastosowaniu.
W momencie wyłączenia tranzystora T4 na jego drenie powstaje napięcie o wartości rzędu 100 V, wywołane nagłym zanikiem prądu płynącego przez dławik L1. Impuls ten jest pięciokrotnie zwielokrotniany w klasycznym układzie powielacza pojemnościowo-diodowego, a napięcie na kondensatorze C1 względem masy osiąga bez problemu wymagane 400 V.
Za stabilizację napięcia odpowiedzialny jest wzmacniacz operacyjny IC5. Do jego wejścia nieodwracającego jest dołączone źródło napięcia odniesienia o wartości 2,5 V, a na wejście odwracające jest podawane napięcie z powielacza do porównania. Uwagę zwraca duża wartość rezystancji wchodzących w skład dzielnika (60/2,5 MΩ), co zapewnia minimalny wpływ na pracę powielacza i nieduży pobór prądu zasilania, a także to, że dzielnik jest dołączony do pierwszego kondensatora w układzie powielacza, na którym panuje napięcie ok. 80 V. W ten sposób pętla sprzężenia zwrotnego jest zamknięta, a napięcie wyjściowe stabilizowane – dokładną wartość reguluje sie potencjometrem R34. Gdy napięcie zasilające układ zasilacza WN (5 V) jest stabilizowane, dla obniżenia kosztów realizacji można zastąpić układ IC6 rezystorem o wartości takiej samej, jak R38, tak aby potencjał na wejściu nieodwracającym wynosił 2,5 V. Warto tylko pamiętać, że pomiary zwykłym woltomierzem napięcia wyjściowego powielacza lub też napięć na wejściach IC5 będą zaniżane z uwagi na duże rezystancje użyte w układzie. Stąd albo trzeba sięgnąć po woltomierz klasy takiej, jak „legendarny” V640 (Rwe=100 MΩ) lub też ustawiać wartość napięcia wyjściowego dokonując pomiaru na C12 i mnożąc wynik przez 5.
Jak widać jedynym elementem indukcyjnym jest dławik DL1. Z uwagi na dużą częstotliwość pracy powinien mieć on konstrukcję możliwie zamkniętą (kubkowy), niską pojemność własną i nie nie może nasycać się przy prądzie rzędu 1 A. Ale w praktyce układ działał z każdym elementem, bez problemu dostarczając żądane 400 V. Prawidłowe działanie powielacza wymaga też użycia dobrych diod powielających, a więc o dopuszczalnym napięciu wstecznym minimum 150 V.