Miniaturowy zasilacz buforowy składa się z dwóch bloków funkcjonalnych: układu U1 typu LTC4425 – specjalizowanej ładowarki superkondensatorów oraz układu U2 typu TPS63031 – przetwornicy buck-boost o napięciu wyjściowym 3,3 V.
Magazynem energii w zasilaczu buforowym jest bateria złożona z dwóch połączonych szeregowo superkondensatorów CS1, CS2 o pojemności 22 F. Podobnie jak przy zastosowaniu akumulatorów, układ ładowania musi zapewnić odpowiednie napięcie, ograniczyć prąd ładowania oraz odpowiednie balansowanie cel podczas ładowania ze względu na połączenie szeregowe.
Superkondensatory – w przeciwieństwie do akumulatorów – wykazują się dużą odpornością na temperaturę (praktycznie -25 do 70°C), możliwością szybkiego ładowania, niską rezystancją wewnętrzną, bardzo dużymi prądami rozładowania, możliwością rozładowania do 0 V i praktycznie nieograniczoną liczbą cykli pracy. Niestety, aby nie było zbyt „różowo”, mają także wady, takie jak: duże gabaryty, małe napięcie przebicia, wrażliwość na przekroczenie napięcia znamionowego, cenę i najpoważniejszą – samorozładowanie.
Kondensatory CS1 i CS2 mają napięcie znamionowe 2,7 V. Zostały one połączone szeregowo, co podwyższyło napięcie znamionowe do 5,4 V oraz ułatwiło dobranie przetwornicy i zapewniło dużą sprawność przetwarzania. Kondensatory dopuszczają rozładowanie do zera, więc zakres napięcia 1,8…5,5 V, w którym pracuje TPS63031, umożliwia wykorzystanie zgromadzonej energii. Ze względu na zastosowanie szeregowej baterii kondensatorów cechą, którą powinien posiadać układ ładowania, oprócz kontroli prądu ładowania jest automatyczne „balansowanie”, czyli zapewnienie stałego rozkładu napięcia na kondensatorach niezależnie od rozrzutu ich pojemności oraz ładunku początkowego. Jest to sprawa bardzo istotna, ponieważ nawet niewielkie przekroczenie dopuszczalnego napięcia pracy powoduje uszkodzenie drogiego superkondensatora. Spośród dostępnych na rynku układów ładowarek wybrano LTC4425, właśnie ze względu na wbudowaną funkcję balansera.
Napięcie zasilania 5 V, filtrowane przez C1, jest doprowadzone do LTC4425. Dzielnik rezystancyjny R2/R3 dołączony do wyprowadzeń PFI/PFIR służy do wykrywania obecności zasilania oraz aktywuje układ ładowania i sygnał awarii zasilania PFO. Wyjście to sygnalizuje błąd natychmiast po zaniku zasilania oraz gdy podczas ładowania napięcie na kondensatorach jest niższe niż 4,5 V. Wejście PFI ma histerezę 10 mV.
Ładowarka LTC4425 może pracować w trybie stabilizatora LDO lub ładowarki – wybór trybu zależy od dołączenia wyprowadzenia FB. W trybie ładowarki prąd wyjściowy jest zależny od różnicy napięć Vin-Vout. Gdy jest ona większa niż 0,75 V (kondensatory rozładowane), prąd jest ograniczany do 10% prądu maksymalnego. Jeżeli różnica jest mniejsza niż 0,25 V, kondensator jest ładowany prądem maksymalnym. Ogranicza to czas trwania udaru podczas ładowania „pustych” kondensatorów. W zakresie przejściowym, prąd zwiększany jest proporcjonalnie do różnicy napięć. Tryb ten wymuszany jest poprzez zwarcie wyprowadzenia FB z Vin. Drugi tryb to stabilizator LDO aktywny, gdy do FB jest dołączony dzielnik ustalający napięcie wyjściowe. W tym trybie prąd nie zależy od różnicy napięć Vin-Vout. W prototypie został ustalony na 200 mA (R1=4,99 kΩ), co odpowiada ograniczeniu pobieranej mocy do 1 W. Tryb LDO jest korzystniejszy, gdy zależy nam na innym niż typowe 2,5/2,7 V napięciu kondensatora i bezpośrednim zasilaniu układu docelowego, np. z ustalonego napięcia 3,3 V. Ułatwia to konstruowanie układów zasilanych z podwójnych kondensatorów o napięciu 4,5 V typu GSF2xx, wykorzystywanych np. w dyskach SSD. Wzory służące do wyznaczenia prądu ładowania i napięcia wyjściowego można znaleźć w dokumentacji.