- Węzeł pomiarowy:
- źródło napięcia zasilania: bateria CR2032,
- maksymalny prąd obciążenia (tryb uśpienia/nadawanie): 10 μA/22,6 mA,
- liczba adresów: 8,
- zakres mierzonych temperatur: –30...50°C,
- rozdzielczość mierzonych temperatur: 0,5°C,
- dokładność pomiaru temperatury (typowa): 0,4°C,
- częstość transmisji danych: co 64 s,
- częstotliwość pracy transceivera: 868 MHz,
- zasięg w terenie otwartym: ok. 100 m.
- Moduł odbiornika:
- napięcie zasilania: 4…9 V,
- maksymalny prąd obciążenia: 30 mA,
- częstotliwość pracy transceivera: 868 MHz,
- zasięg w terenie otwartym: ok. 100 m.
Do tej pory opracowałem zarówno dość proste konstrukcje zawierające nieskomplikowane moduły radiowe pracujące w paśmie 433 MHz i pozbawione jakiegokolwiek stosu komunikacyjnego, jak i zaawansowane układy pracujące na bazie technologii ZigBee, a więc korzystające z wszelkich dobrodziejstw tego medium komunikacyjnego. Za każdym razem był to jednak pewien kompromis pomiędzy funkcjonalnością tak zbudowanego systemu, kosztem jego implementacji a energooszczędnością.
Tym razem stanąłem przed wyzwaniem skonstruowania prostego systemu bezprzewodowego, który będzie odznaczał się niskim poborem energii przez węzły pomiarowe. Jako że w moim poprzednim projekcie energooszczędnego systemu pomiaru temperatury z EP 8/18, EP 9/18 zdobyłem duże doświadczenie w zakresie obsługi bardzo ciekawych modułów radiowych RFM12B produkowanych przez firmę HopeRF, zdecydowałem się na ich zastosowanie również w niniejszym urządzeniu. Moduły, o których mowa, pracują w paśmie 433, 868 lub 915 MHz (w zależności od wersji) i są przedstawicielami licznej rodziny produktów. Stanowią kompletne rozwiązanie toru radiowego nadawczo-odbiorczego, dostarczając wygodny interfejs komunikacyjny SPI pozwalający na przeprowadzenie pełnej konfiguracji elementu w ramach dostępnej szerokiej palety ustawień i sterowanie komunikacją radiową. W tym miejscu nie będę powtarzał informacji dotyczących specyfikacji i obsługi tych peryferiów, gdyż takowe zamieściłem w ramach wspomnianych wcześniej artykułów, w związku z czym zainteresowanych tymi szczegółami Czytelników odsyłam do wskazanych wcześniej wydań EP.
Budowa i działanie
Przejdźmy od razu do szczegółów konstrukcyjnych przedmiotu niniejszego artykułu, a mianowicie bezprzewodowego, energooszczędnego systemu wielopunktowego pomiaru temperatury, który w założeniach charakteryzować się ma następującymi cechami funkcjonalnymi:
- obsługa do 8 adresowalnych węzłów pomiarowych (modułów nadawczych),
- zasilanie bateryjne i bardzo niski pobór mocy węzła pomiarowego,
- pozostawanie w uśpieniu węzłów pomiarowych i cykliczne wybudzanie się, któremu towarzyszy przesyłanie wartości mierzonej temperatury oraz stanu baterii zasilającej,
- efektowny, graficzny interfejs użytkownika po stronie układu nadrzędnego (modułu odbiorczego),
- wysoka ergonomia obsługi całego systemu i brak konieczności konfiguracji,
- kontrola aktywności węzłów pomiarowych przez układ nadrzędny.
Kilka niezbędnych słów uwagi należy się zasilaniu węzłów pomiarowych. Założono, że moduł nadawczy będzie pracował z zasilaniem bateryjnym w postaci pastylki CR2032 i większość swojego czasu będzie pozostawał w uśpieniu (dla ograniczenia poboru mocy), czekając na wybudzenie przez odpowiednio skonfigurowany podsystem mikrokontrolera nazywany watchdogiem. Wspomnianemu wybudzeniu (mikrokontrolera i modułu RF) towarzyszyć będzie wysłanie komunikatu do adresowalnego układu nadrzędnego i ponowne uśpienie urządzenia. W ten prosty sposób ograniczamy do minimum pobór energii ze źródła zasilania, pozwalając na wieloletnią pracę urządzenia. Uważny Czytelnik dostrzeże pewne ograniczenia i sformułuje związane z nimi zapytania. Otóż bateria CR2032 przeznaczona jest do zasilania urządzeń (3 V) cechujących się bardzo niskim poborem prądu rzędu ułamków mA do pojedynczych mA. Nasz układ po wybudzeniu aktywuje nadajnik modułu RFM12B, który w czasie transmisji pobiera prąd rzędu 22,6 mA (maksymalnie), co stanowi bardzo duże obciążenie dla baterii zasilającej.