Postęp techniczny spowodował rozwój obu elementów kondensatora, możliwe stało się wykonanie cieńszych elektrod umożliwiających zwiększenie czynnej powierzchni okładzin przy zachowaniu niewielkiego rozmiaru obudowy, a dielektryki rozdzielające mają wyższe stałe dielektryczne i dopuszczalne napięcia pracy. Pojawiają się też elektrochemiczne sposoby gromadzenia ładunku zbliżające działanie kondensatora do baterii lub akumulatora. Wszytko to prowadzi do miniaturyzacji oraz niewiarogodnego wręcz zwiększenia pojemności, której nie można było się spodziewać jeszcze kilka lat temu. Nikogo nie dziwi kondensator ceramiczny o pojemności 330 µF lub superkondensatory o pojemnościach mierzonych w tysiącach faradów.
Pamiętam, jak w technikum dostałem burę na lekcji elektrotechniki za „szerzenie herezji”, gdy omawiane były kondensatory – powiedziałem, że istnieją niewielkie kondensatory o pojemnościach 0,1 F. Nauczyciel twierdził, że takiej pojemności nie ma na całej kuli ziemskiej, a w praktyce jako elektryk miał do czynienia tylko z kondensatorami o pojemności co najwyżej kilku...kilkudziesięciu mF, stosowanymi w układach kompensacji współczynnika mocy w świetlówkach i rozdzielniach lub używanymi przy rozruchu silników elektrycznych. Jakie było jego zdziwienie, gdy na następną lekcję przyniosłem kondensatory 0,047 F/4,5 V i 0,1 F/4,5 V o rozmiarach zbliżonych do guzika, które ówcześnie były stosowane w magnetowidach do podtrzymania pamięci programów i ustawień programatora nagrywania czasowego. Pamięci nieulotne EEPROM nie były jeszcze powszechne ze względu na wysokie koszty, a spotykane podtrzymanie bateryjne zawartości pamięci było kłopotliwe w eksploatacji. Pomimo przedstawienia namacalnych dowodów niesmak pozostał, a ja tak niefortunnie rozpocząłem swoją przygodę z superkondensatorami.
Czym jest superkondensator, ultrakondensator, pseudokondensator? Odpowiedź jest prosta zawsze jest to rodzaj kondensatora elektrolitycznego o bardzo dużej pojemności, dochodzącej do kilku tysięcy faradów, przy dopuszczalnym napięciu pracy do kilku woltów (obecnie) na celę. Pojemność ta może być osiągnięta w superkondensatorach za pomocą technologii EDLC bazującej na elektrostatycznym gromadzeniu ładunku lub w przypadku pseudokondensatorów na elektrochemicznym gromadzeniu ładunku. Dostępne są też kondensatory hybrydowe, w których zastosowano połączenie wymienionych technologii.
Jakie parametry cechują superkondensatory? Podobnie jak dla wszystkich kondensatorów podstawowymi parametrami są: pojemność, napięcie pracy, zakres temperatur i rezystancja szeregowa. W przypadku superkondensatorów dodatkowo specyfikowane są: maksymalne prądy ładowania i rozładowania [A, kA], często podawana jest moc szczytowa [W, kW], jaką można obciążyć kondensator, liczba cykli ładowania, prąd upływu [mA, µA] oraz wartość przechowanej energii w [Wh] i przeliczenie jej na objętość lub masę kondensatora [Wh/m³, Wh/kg]. Dla kondensatorów hybrydowych opartych na związkach litu (LIC) analogicznie jak w przypadku akumulatorów litowych specyfikowane jest najniższe dopuszczalne napięcie na zaciskach. Poniżej tego napięcia procesy chemiczne zachodzące w kondensatorze prowadzą do jego degradacji i jeżeli stan ten trwa dłużej, prowadzi do nieodwracalnego zniszczenia (dosyć kosztownego) elementu. Te podstawowe parametry specyfikują praktycznie wszyscy producenci, ułatwia to dobór lub porównanie właściwości elementów.
Dlaczego superkondensatory są tematem coraz większego zainteresowania? Zjawisko ma co najmniej trzy przyczyny, ze wspólnym problemem bazowym, jakim jest eliminacja chemicznych źródeł energii.