Urządzenia serii DS1000Z, za sprawą niezwykle obszernej pamięci, panoramicznego ekranu oraz pokaźnego zestawu funkcji pomiarowych, do dziś stanowią podstawowy wybór tych użytkowników, którzy nie chcą płacić kilkukrotnie wyższych cen za zbliżone parametry w aparaturze „wielkiej czwórki”, ale jednocześnie nie ufają tanim, dalekowschodnim markom o wątpliwej rzetelności pomiarowej. W 2022 roku Rigol znów przeskoczył kolejną poprzeczkę – tym razem jednak nie pod względem szybkości czy pojemności pamięci, ale… poziomu szumów własnych i rozdzielczości ADC. Sprawdźmy zatem, jak w praktyce spisuje się najnowsza seria DHO4000.
Subtelnie, ale niekoniecznie szybko
Nietrudno zauważyć, że oscyloskopy z serii DHO4000 (fotografia tytułowa) do złudzenia przypominają przedstawicieli tańszej serii urządzeń tego samego producenta – DHO1000, która swoją premierę – na razie tylko na niektórych rynkach zagranicznych – miała w nieco zbliżonym czasie. Porównanie parametrów obu serii (tabela 1) sugeruje, że oszczędności uzyskane w modelach DHO1000 wynikają przede wszystkim z ograniczenia pasma, liczby kanałów oraz pojemności pamięci przebiegów – i faktycznie jest to po części prawda. Po części, gdyż… podobieństwa konstrukcyjne, wykazane przez Davida L. Jonesa z kultowego EEVblog po otwarciu obydwu oscyloskopów, jasno pokazują, iż pozostałych różnic pomiędzy DHO1000 i DHO4000 jest naprawdę niewiele.
Warto natomiast zwrócić uwagę na dwie istotne kwestie, dotyczące liczby kanałów oraz pasma pomiarowego. W przypadku „białej serii” redukcja liczby kanałów analogowych do dwóch oraz pasma do 70...200 MHz może być potraktowana jako ukłon w stronę świadomych swoich potrzeb amatorów czy też uczelni i szkół – w podstawowych zastosowaniach dydaktycznych dość rzadko zdarza się bowiem, by potrzebne były więcej niż dwa kanały czy też pasmo przekraczające 100 MHz.
Nie ulega wątpliwości, że nowoczesny oscyloskop cyfrowy z 12-bitowymi przetwornikami i próbkowaniem do 2 GSps za niespełna 700 dolarów to naprawdę duże osiągnięcie. Ukłony dla inżynierów i strategów marketingowych z firmy Rigol.
W tym miejscu musimy jednak dostrzec przysłowiową łyżkę dziegciu w beczce miodu. W przypadku serii DHO4000 próbkowanie jest już dwa razy szybsze i wynosi 4 GSps, choć niestety – co jest jednak standardem w tej klasie urządzeń – podlega podziałowi podczas pracy wielokanałowej. I tutaj dzieje się rzecz dziwna – choć przy paśmie 200 MHz (najniższy model DHO4204) próbkowanie takie jest w zupełności wystarczające nawet przy pracy z czterema kanałami naraz (przypada wtedy po 1 Gsps/kanał), to w przypadku modelu najwyższego o paśmie 800 MHz ten sam stosunek próbkowania do pasma (5:1) można osiągnąć tylko przy włączonym jednym kanale. Graniczna częstotliwość pasma równa 2,5-krotności próbkowania byłaby natomiast osiągalna przy dwóch kanałach, jednak jest to zaledwie teoretyczne minimum, niezbędne do właściwego (z matematycznego punktu widzenia) odwzorowania przebiegu (de facto, taki stosunek częstotliwości próbkowania do pasma tylko nieznacznie przewyższa kryterium Nyquista). Co więcej – rozszerzenie pasma odbywa się na drodze programowej, co jasno pokazuje, że nie ma żadnych różnic sprzętowych pomiędzy poszczególnymi modelami tej serii. Czy znajdą się użytkownicy chętni do odblokowania dodatkowego pasma z 200 na 800 MHz za cenę – bagatela – 2199 dolarów bądź też do inwestowania od razu w najwyższy model, droższy o 2000 dolarów? Czas pokaże, choć niewątpliwie doświadczeni Czytelnicy popatrzą na tę część oferty z pewnym pobłażaniem, zaś internetowe fora już „huczą” od postów na temat potencjalnego hackowania ustawień sprzętu.
Trudno bowiem nie ulec wrażeniu, że – w myśl śródtytułu tej części artykułu – seria DHO4000 jest przeznaczona dla „analogowców”, którym najbardziej zależy na wysokiej jakości rejestracji słabych zmian w sygnale (impulsów, zapadów, zafalowań, itd.), a w znacznie mniejszym stopniu na pracy z szybkimi sygnałami. Tym bardziej, że w cenie zaledwie o 1100 dolarów wyższej (w por. do DHO4804) można obecnie mieć topowy model z serii DS7000 (bez opcji MSO) – wprawdzie o paśmie 500 MHz, ale oferujący aż 2,5-krotnie szybsze próbkowanie (10 GSps) oraz 12× wyższą prędkość przechwytywania (600,000 wfms/s w porównaniu do 50,000 wfms/s), co w wielu aplikacjach będzie miało pierwszorzędne znaczenie dla użytkowników.