- Zasilanie 8…30 V DC, pobór prądu ok. 15 mA.
- Zapamiętywanie odmierzonego już czasu w chwili wykrycia utraty zasilania.
- Detekcja prądu o częstotliwości 50 Hz lub 60 Hz.
- Minimalny próg zadziałania: ok. 70 mA wartości skutecznej.
- Czas odliczany w jednej z trzech postaci: dni, dni i godziny, godziny i minuty.
- Sygnalizowanie odliczania poprzez miganie kropką na wyświetlaczu.
- Zatrzymywanie odliczania po przepełnieniu.
- Możliwość skasowania zapamiętanego czasu.
- 4-cyfrowy wyświetlacz LED.
- Płytka drukowana o wymiarach 90 mm×29 mm.
Wiele urządzeń, podczas przestoju w pracy, może znajdować się w trybie czuwania. Nie wykonują one żadnej pracy, są pozornie wyłączone, ale obwody sterujące są zasilane. Aby wydobyć informację użyteczną z punktu widzenia czasu pracy, należałoby pobrać ją z wnętrza urządzenia, co może skończyć się utratą gwarancji.
Opisywany licznik czasu pracy wyposażono w przekładnik prądowy, którego zadaniem jest pomiar prądu pobieranego przez urządzenie. Jeżeli wzrośnie on powyżej ustalonego ręcznie progu, wówczas uznaje się, że urządzenie przystąpiło do działania i jest liczony czas jego faktycznej pracy. Do tego wystarczy przewlec jeden z przewodów sieciowych przez otwór w przekładniku.
Schemat ideowy
Użyty w liczniku mikrokontroler to ATmega48PA. W tej aplikacji jego dużą zaletą jest możliwość pracy przy napięciu zasilania wynoszącym 1,8 V. Ma to kluczowe znaczenie podczas zapisu danych do nieulotnej pamięci EEPROM, kiedy układ jest zasilany wyłącznie z pojemności filtrujących. Częstotliwość generatora taktującego mikrokontroler jest stabilizowana za pomocą rezonatora kwarcowego (4 MHz). Ten sam generator służy do odmierzania czasu.
Wyświetlacz ma 4 cyfry, każda ze wspólną anodą. Sterowanie wszystkimi wyprowadzeniami odbywa się bezpośrednio z wyprowadzeń mikrokontrolera, ponieważ prąd segmentów został ograniczony do ok. 2,5 mA, dzięki czemu cała cyfra nie pobiera więcej niż 20 mA.
Zasilanie doprowadza się do złącza J1. Dioda D1 zabezpiecza układ przed zniszczeniem w razie błędnego dołączenia napięcia zasilania. Napięcie stabilizowane 5 V służy do zasilenia bloku analogowego oraz dzielnika rezystancyjnego. Ten dzielnik, w warunkach normalnej pracy, polaryzuje wejście odwracające komparatora wbudowanego w mikrokontroler potencjałem ok. 2,5 V. Z kolei do wejścia nieodwracającego jest dołączone wewnętrzne źródło referencyjne, o napięciu 1,23 V.
Wyjście komparatora jest wyzerowane.
W momencie zaniku zasilania stabilizator przestaje zasilać dzielnik i wyjście komparatora zostaje ustawione. To zbocze narastające powoduje uruchomienie obsługi przerwania, w której jest wyłączany wyświetlacz, a do pamięci EEPROM są zapisywane aktualne wskazania czasu. Takie rozwiązanie nie nadwyręża pamięci EEPROM regularnym zapisywaniem, co ma swoje uzasadnienie, ponieważ liczba cykli zapisu do niej/odczytu z niej jest ograniczona.
Złącze J2 służy do zaprogramowania mikrokontrolera wlutowanego w płytkę. Proces ten odbywa się za pomocą standardowego interfejsu ISP (In-System Programming).
Do zacisków złącza J3 podłącza się przewody prowadzące do przekładnika prądowego. Rezystor R15 stanowi obciążenie jego uzwojenia, przez co odkłada się na nim napięcie. Dla użytego w prototypie przekładnika ASM-010 firmy Talema rezystor obciążający powinien mieć rezystancję 50 Ω. W rzeczywistości zastosowano rezystor o dwukrotnie większej rezystancji, ponieważ istotna jest czułość, a nie liniowość.
Napięcie sinusoidalnie zmienne, które odkłada się na R15, ma amplitudę rzędu miliwoltów. Tak małych wahań napięcia mikrokontroler nie jest w stanie zarejestrować. W tym celu dodano wzmacniacz o bardzo dużym wzmocnieniu napięciowym. Pierwszy człon ma sztywno ustalone wzmocnienie ok. 100 V/V. Warto zauważyć, że napięcie podawane na wejście nieodwracające wzmacniacza operacyjnego jest bipolarne, a sam wzmacniacz zasilany jest asymetrycznie. Wzmacniana jest jedynie dodatnia połówka wchodzącej sinusoidy, zaś ujemną pomija się, ponieważ nie niesie ona żadnej dodatkowej informacji. Powoduje to znaczące uproszczenie układu. Stopień wejściowy LM358 jest w stanie pracować poprawnie, o ile chwilowy potencjał któregokolwiek wejścia nie spadnie poniżej –0,3 V, co powoduje otwarcie złącza baza-kolektor. W tym układzie jest to zagwarantowane: wartość szczytowa napięcia na rezystorze R15 nie przekroczy ok. 100 mV.
Drugi stopień wzmacniacza ma regulowane wzmocnienie w zakresie od 1 V/V do ok. 500 V/V. Kondensator C9 separuje składową stałą tak, aby drugi stopień nie nasycał się od napięcia stałego, które uzyskuje z wyjścia pierwszego stopnia. Rezystor R18 polaryzuje to wejście potencjałem 0 V. Stała czasowa obwodu C9…R18 jest na tyle duża (100 ms), że kondensator nie przeładowuje się i sygnał zmienny o częstotliwości 50…60 Hz niemal nie „dostrzega” jego obecności.