Mikrokontrolery to niewielkie, specjalizowane układy scalone, które odgrywają kluczową rolę w sterowaniu różnymi funkcjami elektronicznymi. Ich wszechstronne zastosowanie obejmuje obsługę czujników, wykonywanie obliczeń, kontrolę włączania i wyłączania elementów wykonawczych oraz komunikację z innymi urządzeniami. Mikrokontroler łączy w sobie procesor, pamięć programu, pamięć danych, różne interfejsy wejścia/wyjścia oraz inne funkcjonalności, takie jak przetworniki analogowo-cyfrowe (ADC) i cyfrowo-analogowe (DAC).
Omawiany rodzaj układów scalonych zaprojektowany został do wykonywania pewnych z góry określonych zadań, przy ograniczonych zasobach – np. w układach o niewielkich rozmiarach i relatywnie małym zużyciu energii. Taka uniwersalność po części wynika z elastyczności, jaką stwarza programowalność, a po części z ogromnej liczby różnorodnych mikrokontrolerów dostępnych na rynku. Niektóre z nich są przeznaczone do ogólnych zastosowań, ale istnieje wiele układów, które dedykowane są do realizacji zadań w bardzo wąskiej niszy. Mikrokontrolery wykorzystywane są zatem do sterowania szeroką gamą konstrukcji, od systemów automatyki domowej, przez aplikacje medyczne, samochodowe systemy sterowania, po elektronikę przenośną, AGD czy urządzenia audio/wideo. Można je znaleźć w niemalże każdym urządzeniu elektronicznym, jakie mamy w domu.
W tym artykule skupimy się na najnowszych trendach w sektorze mikrokontrolerów oraz możliwościom, jakie oferują nowe układy. Przyjrzyjmy się, jakie rodziny mikrokontrolerów zadebiutowały w ostatnim czasie, a także: jakiego rodzaju mikrokontrolery zyskują, a jakie tracą na popularności, ze względu na kierunek rozwoju branży.
8-bitowce wiecznie żywe
Układy AVR to rodzina ośmiobitowych mikrokontrolerów, stworzona przez firmę Atmel. Obecnie produkowane są przez Microchipa, który w 2016 roku kupił Atmela. AVRy obecne są na rynku od 1997 roku i zdobyły od tego czasu ogromną popularność, głównie dzięki swojej prostej budowie i łatwemu programowaniu. Do dalszego ich upowszechniania przyczyniło się wykorzystanie układów z tej rodziny w szalenie popularnych wśród hobbystów modułach Arduino.
AVRy nie ograniczają jednak się do zastosowań hobbystycznych. Układy te często stosowane w urządzeniach konsumenckich czy przemysłowych, tym bardziej, że w ofercie firmy dostępnych jest wiele linii AVR, wyposażonych w funkcje dostosowane do bardzo wyspecjalizowanych wymagań.
Podobnie jest z nową rodziną układów AVR DD, opracowanych do zastosowań ogólnych i przemysłowych (oferują one bowiem wsparcie norm bezpieczeństwa funkcjonalnego).
Rodzina mikrokontrolerów AVR DD bazuje na znanym rdzeniu AVR ze sprzętowym mnożnikiem działającym w dwóch cyklach zegara, pracujący z prędkością taktowania do 24 MHz. Rdzeń ten pozwala na dostęp do wyjść i wejść w jednym cyklu zegara, ma wbudowany dwupoziomowy kontroler przerwań. Mikrokontrolery AVR DD wyposażane są w pamięć Flash o pojemności 16, 32 lub 64 kB, SRAM o pojemności 2, 4 lub 8 kB oraz EEPROM o pojemności 256 bajtów, w zależności od układu – i są dostępne w obudowach 14-, 20-, 28- oraz 32-pinowych (VQFN, TQFP, SSOP, SOIC, jak i SPDIP). Zasilane są napięciem w zakresie od 1,8 V do 5,5 V.
Producent określa wytrzymałość pamięci na zapis i wymazywanie: dla Flash jest to 10 000 cykli, a dla pamięci EEPROM: 100 000 cykli. Retencja danych wynosić ma 40 lat w temperaturze 55°C. Podawanie tych informacji na pierwszej stronie karty katalogowej nie jest typowe, ale powinno być zrozumiałe, jeśli zwrócimy uwagę na informacje o wsparciu dla norm IEC 61508 oraz ISO 26262. Układ wspiera dodatkowo obliczenia CRC dla pamięci Flash oraz szereg typowych zabezpieczeń, takich jak watchdog, układ Power-on Reset (POR), czy detektor zapadu napięcia (BOD).
Nowe układy programowane są przy pomocy jednoliniowego, zintegrowanego interfejsu do programowania i debugowania (UPDI), podobnie jak wszystkie inne nowoczesne mikrokontrolery AVR.
Opisywaną rodzinę układów mikrokontrolerów wyposażono w zintegrowane bloki CIP. Elementy te redukują obciążenie procesora dzięki wykorzystaniu rozbudowanego systemu obsługi zdarzeń i konfigurowalnych peryferiów niestandardowych (CCL). MVIO rodziny AVR DD umożliwia dwukierunkową komunikację z układami pracującymi w innej w domenie zasilania, co eliminuje konieczność stosowania zewnętrznych konwerterów poziomów logicznych. Elastyczność nowych mikrokontrolerów sprawia, że są doskonałe do zastosowań wymagających sterowania w czasie rzeczywistym w systemach kontroli procesów przemysłowych, urządzeniach gospodarstwa domowego, instalacjach samochodowych czy urządzeniach Internetu Rzeczy (IoT). Mikrokontrolery AVR DB są dobrze radzą sobie też z przetwarzaniem sygnałów – wyposażone są w trzy wbudowane wzmacniacze operacyjne, 12-bitowy przetwornik ADC, 10-bitowy przetwornik DAC, a także układ detekcji przejścia przez zero i komparator analogowy. Peryferia te ułatwiają m.in. budowę interfejsów użytkownika opartych na pojemnościowej technologii dotykowej.