

Preliminary LTC4296-1

5-Port SPoE PSE Controller

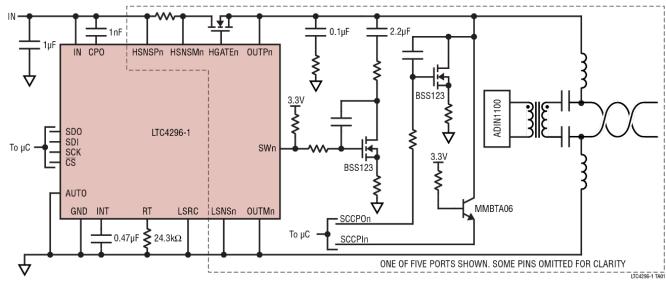
FEATURES

- ▶ IEEE 802.3cg Compliant SPoE PSE
- Five Independent PSE Ports
- ▶ Wide Input Voltage Range: 6V to 60V
- ► Adjustable Source and Return Electronic Circuit Breakers
- ► 50µA (typ) Supply Current in Deep Sleep/Disabled
- Charge Pump Enhances External High-Side N-Channel MOS-FET
- Supports PD Classification with a Microcontroller
- SPI Bus Interface with PEC
- ▶ Voltage, Current, and Temperature Telemetry
- Per Port Power Good Comparators
- ▶ PD Sleep, Wakeup, and Wakeup Forwarding Support
- Available in 48-lead 7mm × 7mm QFN Package

APPLICATIONS

- Operational Technology (OT) Systems
- Building and Factory Automation Systems
- Field instruments and switches
- Security Systems
- Traffic Control Systems

DESCRIPTION


The LTC[®]4296-1 is an IEEE 802.3cg compliant five port Single-pair Power over Ethernet (SPoE) Power Sourcing Equipment (PSE) controller. SPoE simplifies system design and installation with standardized power and Ethernet data over a single-pair cable. The LTC4296-1 is designed for interoperability with 802.3cg Powered Devices (PDs) in 24V or 54V systems. It delivers power using external, low R_{DS(ON)}, N-channel MOSFETs which minimize voltage drop and ensure application ruggedness.

High-side circuit breakers with foldback Analog Current Limit (ACL) provide controlled inrush and short circuit protection. An optional low-side circuit breaker protects the negative output against back-feed faults, and ground faults in non-isolated applications. PD classification and Maintain Full Voltage Signature (MFVS) ensure full operating voltage is only applied to the cable when a PD is present. SWn pins disconnect port power snubbers during detection and classification. PD initiated sleep and wakeup are supported. The WAKEUP pin supports wakeup forwarding. Telemetry, status, and software control features are accessed via a SPI bus interface with Packet Error Code (PEC) protection.

The LTC4296-1 provides a versatile SPoE PSE solution for 10BASE-T1L controllers and switches and can easily be integrated with the ADI 10BASE-T1L transceiver portfolio such as the ADIN1100 (PHY), ADIN1110 (MAC-PHY) and ADIN2111 (2-Port switch).

All registered trademarks and trademarks are the property of their respective owners.

TYPICAL APPLICATION

Figure 1. IEEE 802.3cg Compliant PSE

Rev. PrA

DOCUMENT FEEDBACK

TECHNICAL SUPPORT

Information furnished by Analog Devices is believed to be accurate and reliable "as is". However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

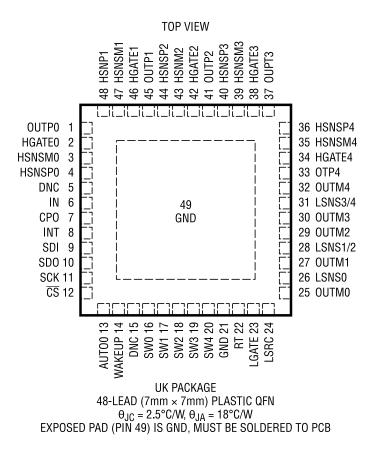
Features	1
Applications	1
Description	1
Typical Application	
Absolute Maximum Ratings	3
ESD Caution	3
Pin Configuration	4
Electrical Characteristics	5
SPI Bus Timing Diagram	9
Typical Performance Characteristics	10
Pin Functions	17
Operation	19
Overview	19
Data Sheet Fonts	21
Usage Cases	21
Port State Descriptions	22
Host Serial Interface	25
Sample Code	27
Register Map	28
Global Events	32

Global Status	32
Command	32
Configuration	
Global ADC	33
Portn Events	34
Portn Status	35
Portn Configuration	35
Portn Diagnosis	
Applications Information	
Application Overview	37
Power Supply	
External Component Selection	
MDI Fault Tolerance	40
Layout Guidelines	42
Data Converters	
Isolation Considerations	43
Low-Droop Applications	
Package Description	
Typical Application	
Related Parts	

ABSOLUTE MAXIMUM RATINGS

(Notes 1, 2, 3, 4, 5)

Table 1.


PARAMETER	RATING
Supply Voltage	
IN	-0.3V to 80V
INT	-0.3V to 6V
Input Voltages	
SDI, SCK, CS, AUTO, RT	–0.3V to 6V
HSNSPn, HSNSMn	-0.3V to 80V
HSNSPn to HSNSMn	-5V to 10V
OUTMn	-5.5V to 80V
LSNSn	-5.5V to 80V
OUTPn	-5.5V to 80V
Output Voltages	
SDO, WAKEUP, SWn	-0.3V to 6V
LGATE to LSRC	-0.3V to 15V
LSRC	-5.5V to 4V
CPO to IN	-0.3V to 15V
HGATEn to OUTPn	-0.3V to 15V
Output Currents	
SDO, SWn	±5mA
RT	-10mA to 1mA
Operating Junction Temperature Range	–40 to 125°C
Storage Temperature Range	-65°C to 150°C
Lead Temperature (Soldering, 10 sec)	300°C

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION

The * denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}$ C. $V_{IN} = 6$ V and 60V unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
IN							
V _{IN}	Input Supply Operating Range		*	6		60	V
		All Ports in POWER_ON State	*		6.5	10	mA
		All Ports in SLEEP State, Serial Bus Idle	*		52	140	μA
		All Ports in DISABLED State, Serial Bus Idle	*		51	135	μA
I _{IN}	Input Supply Current	All Ports in DETECTION State	*		80	90	mA
INT		I				11	
V _{INT}	INT Voltage	I _{INT} = 0, -100μA	*	4.1	4.3	4.5	V
HSNSPn, HSNSMn							
		$\Delta V_{HSNS_{ILIMn}} = (V_{HSNSPn} - V_{HSNSMn});$ $V_{IN} - V_{OUTPn} < 12V; V_{HSNSPn} = 6V, 60V$	*	177	186	193	mV
$\Delta V_{HSNS ILIM}$	Analog Foldback Current Limit Threshold	V _{IN} -V _{OUTPn} = 60V; V _{HSNSPn} = 60V	*	37	41	46	mV
IN HSNSPn	HSNSPn Input Current	$V_{IN} = V_{HSNSPn} = V_{HSNSMn} = 60V$	*		95	190	μA
	HSNSMn Input Current	$V_{IN} = V_{HSNSPn} = V_{HSNSMn} = 60V$	*		66	128	μΑ
LSNS0							
$\Delta V_{LSNS FCB0}$	Port 0 Forward Circuit Breaker Threshold	$\Delta V_{LSNS FCB0} = (V_{OUTM0} - V_{LSNS0})$	*	60	76	90	mV
$\Delta V_{LSNS RCB0}$	Port 0 Reverse Circuit Breaker Threshold	$\Delta V_{\text{LSNS}} = (V_{\text{LSNS}} - V_{\text{OUTM0}})$	*	60	76	90	mV
	Deep Sleep Return Path Reverse Fault	All Ports in SLEEP/DISABLED State;	+				
V _{SLP_RCB}	Threshold	Serial Bus Idle; $V_{SLP RCB} = V_{LSNS0}$	*	-1.2	-0.87	-0.25	V
	Deep Sleep Return Path Forward Fault Threshold	All Ports in SLEEP/DISABLED State; Serial Bus Idle	*	15	34	45	mA
SLP_FCB		All Ports in SLEEP/DISABLED State;	+	10		- U	
ISLP_LSNS0	Deep Sleep Return Path Short Circuit Current	Serial Bus Idle; V _{LSNS0} = 2.5V	*	40	79	110	mA
<u>'5LP_L5N50</u>		All Ports in SLEEP/DISABLED State;	+	10	10	110	
R _{SLP_LSNS0}	Deep Sleep Return Path Impedance	Serial Bus Idle; I _{LSNS0} = 10mA	*	17	22	45	Ω
LSNS1/2, LSNS3/4						-	
$\Delta V_{LSNS_{FCBn}}$	Forward Circuit Breaker Threshold	$\Delta V_{LSNS FCBn} = (V_{OUTMn} - V_{LSNSn})$	*	60	76	90	mV
ΔV_{LSNS_RCBn}	Reverse Circuit Breaker Threshold	$\Delta V_{\text{LSNS RCBn}} = (V_{\text{LSNSn}} - V_{\text{OUTMn}})$	*	60	76	90	mV
	Input Current	$V_{LSNS_n} = -0.1V, 0.1V$	+		-2.5		μΑ
HGATEn							
	External Port Source Path N-Channel	AUTO High					
ΔV_{HGATEn}	MOSFET Gate Drive	$\Delta V_{\text{HGATEn}} = (V_{\text{HGATEn}} - V_{\text{OUTPn}}); I_{\text{HGATEn}} = 0, -1\mu A$	*	9.3	10.2	10.6	V
I _{HGATE_UPn}	HGATEn Pull-Up Current	POWER_ON State; ∆V _{HGATEn} = 3V	*	-45	-34	-28	μA
		POWER ON State;					
I _{HGATE_FASTn}	HGATEn Fast Pull-Down Current	V_{HSNSPn} - V_{HSNSPn} = 0.3V; ΔV_{HGATEn} = 3V	*	40	72	150	mA
		DISABLED State; $\Delta V_{HGATEn} = 1.5V$; $V_{OUTPn} = 0V$	*	8	16	24	mA
IHGATE_SLOWn	HGATEn Slow Pull-Down Current	DISABLED State; ∆V _{HGATEn} = 1.5V; V _{OUTPn} = −2V	*	40	110	185	μA
		POWER_ON State; V _{OUTPn} = 0V; I _{HGATEn} = 1mA;					
V _{PULLDOWN FASTn}	HGATEn Fast Pull-Down Dropout Voltage	V_{HSNSPn} - V_{HSNSPn} = 0.3V	*		1.1	1.4	V
V _{PULLDOWN} SLOWn	HGATEn Slow Pull-Down Dropout Voltage	DISABLED State; V _{OUTPn} = 0V; I _{HGATEn} = 10µA	*		0.14	0.3	V
dV _{HGATEn} /dt	HGATEn Inrush Slew Rate	POWER_UP State; V _{HSNSPn} -V _{HSNSMn} < 30mV	*	14	16.5	19	V/ms
LGATE	1						
		POWER ON State		V _{IN} –			
		$6V < V_{IN} < 8.6V; I_{LGATE} = 0, -1\mu A$	*	0.2		VIN	V
ΔV_{LGATE}	External Return Path N-Channel Gate Drive	POWER ON State	*	8.25	9.5	9.8	V

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
		V _{IN} ≥ 8.6V; I _{LGATEn} = 0, –1mA					
ILGATE(UP)	LGATE Pull-Up Current	AUTO High; $V_{LGATE} - V_{LSRC} = 3V$	*	-3.3	-2.2	-0.6	mA
		LGATE Disabled					
ILGATE(DWN)	LGATE Pull-Down Current	V _{LGATE} = 3V; V _{LSRC} = 0V	*	70	180	270	mA
		LGATE Disabled					
V _{LGATE(OFF)}	LGATE Pull-Down Voltage	I _{LGATE} = 10μΑ; V _{LSRC} = 0V	*		0.6	1	V
AUTO	·		· · ·				
V _{AUTO}	Input Threshold Voltage	V _{AUTO} Rising	*	1.15	1.205	1.25	V
	Input Hysteresis	V _{AUTO} Falling			11		mV
I _{AUTO}	Input Current	V _{AUTO} = 5.5V	*	-100		100	nA
		Positive Going Spike			28		μs
t _{SP_AUTO}	Pulse Width of Spike Suppressed	Negative Going Spike			7		μs
Port Source Current I	Readback ADC	· · ·					
	Resolution	(Note 9)			11		Bits
	Full-Scale				204.8		mV
	Gain Error	V _{HSNSPn} – V _{HSNSMn} < 200mV (Note 7)	*			±2.5	%
	Offset	Code 2048 Center (Note 7)	*	-250	-50	150	μV
	Integral Nonlinearity	(Note 7)	*			±1	LSB
	Conversion Time	(Note 8)	*	3.3	3.6	4	ms
VIN, Port Output Volta	age, and Port Return Current Readback ADC (GI	obal ADC)	I				
	Resolution	(Note 9)			11		Bits
		V _{OUTPn} – V _{OUTMn} , V _{IN} ; Low Gain			72.09		V
	Voltage Readback Full-Scale	V _{OUTPn} – V _{OUTMn} , V _{IN} ; High Gain			36.04		V
	Current Readback Full-Scale	$V_{OUTMn} - V_{LSNSn}$			204.8		mV
	Full-Scale Gain Error				±2.5		%
	Offset	Code 2048 Center			±1		LSB
	Integral Nonlinearity				±1		LSB
	Conversion Time	(Note 8)	*	3.3	3.6	4	ms
Internal Check Voltag	e Reference (Accessible through the Global AD						
	Code	·			3548		LSB
	Tolerance		*			±3.5	%
	Conversion Time	(Note 8)	*	3.3	3.6	4	ms
Internal Temperature	Sensor (Accessible through the Global ADC)						
	Weight				0.25		°C/LSE
	Error				±5		°C
	Conversion Time	(Note 8)	*	3.3	3.6	4	ms
SDI, SCK, CS							
V _{ILD}	Digital Input Low Voltage		*			0.8	V
	Digital Input High Voltage		*	2			V
I _{SPI}	Input Current	V _{SDI} , V _{SCK} , V _{CS} = 5.5V	*	-1		1	μA
SDO, SWn	· ·		I		1	1	
V _{OL}	Output Low Voltage	I _{SDO} , I _{SWn} = 3mA	*			0.4	V
ILEAK	Output Leakage Current	V _{PIN} = 5.5V	*	-1		1	μΑ
Thermal Shutdown In				-	1		
T _{SHUTDOWN}	Thermal Shutdown Junction Temperature				175		°C
	Thermal Shutdown Junction Temperature						-
T _{SHUTDOWN(HYST)}	Hysteresis				30		°C

Table 2.

Table 2.							
SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
OUTPn, OUTMn							
V _{OC}	Open-Circuit Detection Voltage	DETECTION State; I _{OUTPn} = 0	*	5.05	5.2	5.5	V
V _{BAD HI PSE}	Invalid PD Signature Voltage High-Range	DETECTION State; mr_valid_signature = FALSE	*	4.7		5	V
V _{BAD_LO_PSE}	Invalid PD Signature Voltage Low-Range	DETECTION State; mr_valid_signature = FALSE	*	3.7		4.05	V
V _{SLEEP}	SLEEP State Output Voltage	SLEEP State; I _{OUTPn} = 0, -1.85mA, 100µA	*	3.15	3.4	3.575	V
V _{DISABLE}	Port Disabled Voltage at OUTPn	Port Disabled; I _{OUTPn} = 50µA	*			1	V
	OUTPn Discharge Current During	SETTLE_SLEEP State,					
IDISCHARGE	SETTLE_SLEEP State	I _{OUTPn} ,V _{OUTPn} -V _{OUTMn} = 6V	*	1.2	2.1	3.6	mA
I _{SC}	Short-Circuit Current	SLEEP State, I _{OUTPn}	*	-6.8	-5.5	-4.25	mA
IWAKEUP	Valid Wakeup Current Input Range	SLEEP State, I _{OUTPn}	*	-1.85		-1.25	mA
		DETECTION State, V _{OUTPn} -V _{OUTMn} = 0	*	-16	-14	-12	mA
I _{VALID}	Detection Probe Current range	DETECTION State, V _{OUTPn} -V _{OUTMn} = 4.7V	*	-16	-13	-11	mA
		Port Enabled; $\Delta V_{OUTP_PWRGDn} = V_{OUTPn} - V_{IN}$;					
ΔV_{OUTP_PWRGDn}	High-Side Power Good Threshold Voltage	$V_{OUTMn} = 0V; V_{OUTPn} \overline{R}$ ising	*	390	440	510	mV
	High-Side Power Good Threshold Voltage						
$\Delta V_{OUTP_PWRGDn(HYST)}$	Hysteresis	Port Enabled; V _{OUTPn} Falling			22		mV
		Port Enabled; $\Delta V_{OUTMn_PWRGDn} = V_{OUTMn}$					
ΔV_{OUTM_PWRGDn}	Low-Side Power Good Threshold Voltage	$\Delta V_{OUTP_PWRGDn} = 0V$	*	150	200	250	mV
WAKEUP							
I _{PU}	Internal Pull-Up Current	V _{WAKEUP} = 1.2V	*	-125	-100	-75	μA
R _{PD}	Internal Pull-Down Resistance	V _{WAKEUP} = 5.5V	*	0.4	1.2	2.25	MΩ
V _{OH}	Internal Pull-Up Voltage	Ι _{WAKEUP} = 0, 50μΑ	*	3.25	3.8	4.5	V
V _{ITH}	Input Threshold Voltage	V _{WAKEUP} Rising	*	1.15	1.205	1.25	V
V _{ITH(HYST)}	Input Threshold Voltage Hysteresis	V _{WAKEUP} Falling			10		mV
`		Positive Going Spike			30		μs
t _{SP WAKEUP}	Pulse Width of Spike Suppressed	Negative Going Spike			6		μs
Port Timing Characterist	ics				1		
t _{DET}	DETECTION State Timeout	DETECTION State; Invalid Signature	*	2.55		3.11	ms
t _{SIG_HOLD}	Detection Signature Hold Time	DETECTION State; Valid Signature	*	1		1.22	ms
t _{INRUSH TOL}	POWER_UP State Timeout Tolerance	POWER_UP State; Short-Circuit; Programmable	*			±7	%
		Programmable;					
t _{LIM_TOL}	HSNS Overload Fault Delay Time Tolerance	HSNS Circuit Breaker Threshold Exceeded	*			±7	%
		V _{LSNSn} = 1.2V	*	1.3	1.8	2.4	μs
t _{LSNS_FAULT}	LSNS Circuit Breaker Delay Time	V _{LSNSn} = -0.1V	*	2	4	6.3	μs
t _{OD_TOL}	OVERLOAD Delay Tolerance	OVERLOAD State; Programmable	*			±7	%
t _{MFVS}	MFVS Valid Hold Time	MFVS Present to mfvs_valid	*	4	5	6	ms
t _{MFVDO}	MFVS Dropout Time	MFVS Absent to tmfvdo_timer_done	*	300	350	400	ms
	OUTPn Sleep Regulator Overload Fault Delay						
t _{LIM_SLEEP_TOL}	Time Tolerance	IDLE or SLEEP States; Programmable	*			±20	%
t _{RESTART_TOL}	RESTART Delay Tolerance	RESTART State; Programmable	*			±7	%
twakeup	Wakeup Deglitch Time		*	0.05		0.1	ms
t _{OFF}	Turn Off Time	SETTLE_SLEEP to OVERLOAD; V _{OUTPn} = 5V	*	409		500	ms
SPI Bus Timing							
f _{CLK}	SCK Frequency		*			1	MHz
$\frac{t_1}{t_1}$	SDI Setup Time Before SCK Rising Edge		*	26			ns
t ₂	SDI Hold Time After SCK Rising Edge		*	25			ns
$\frac{1}{t_3}$	SCK Low		*	200			ns
$\frac{s}{t_4}$	SCK High		*	200			ns
•		I			1		

Table 2.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
t ₅	CS Rising Edge to CS Falling Edge		*	650			ns
t ₆	SCK Rising Edge to CS Rising Edge		*	800			ns
t ₇	CS Falling Edge to SCK Rising		*	1			μs
t ₈	SCK Falling Edge to SDO Valid	(Note 6)	*			100	ns
t ₉	CS Rising Edge to SDO Rising	(Note 6)	*			250	ns

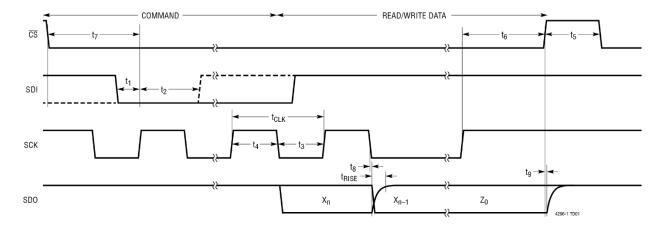
Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to GND unless otherwise specified.

Note 3: This IC includes over-temperature protection that is intended to protect the device during momentary overload conditions. The maximum rated junction temperature will be exceeded when this protection is active. Continuous operation above the specified absolute maximum operating junction temperature may impair device reliability or permanently damage the device.

Note 4: Externally forced voltage absolute maximums. The LTC4296-1 may exceed these during normal operation.

Note 5: The LTC4296-1 is tested under pulsed load conditions such that $T_J \approx T_A$. The LTC4296-1A is guaranteed over the -40°C to 125°C operating junction temperature range.


Note 6: These specifications do not include the rise or fall time of SDO. While fall time (typically 5ns due to the internal pull-down transistor) is not a concern, rising-edge transition time t_{RISE} is dependent on the pull-up resistance and load capacitance on the SDO pin.

Note 7: These specifications are tested at V_{IN} = 6V. The operation at V_{IN} = 60V is guaranteed by design.

Note 8: These specifications are guaranteed by design.

Note 9: Both port and global ADCs have a bipolar input range which is spanned by 11-bits plus a sign bit.

SPI BUS TIMING DIAGRAM

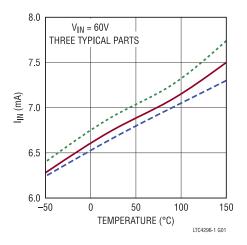


Figure 2. IIN vs. Temperature, All Ports in POWER_ON State

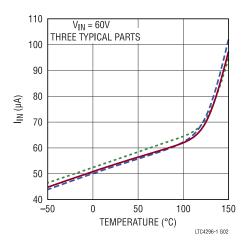


Figure 3. IIN vs. Temperature, All Ports in SLEEP State

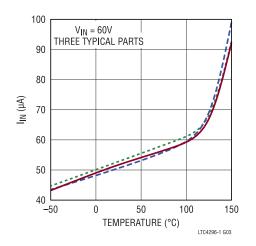


Figure 4. I_{IN} vs. Temperature, All Ports in DISABLED State

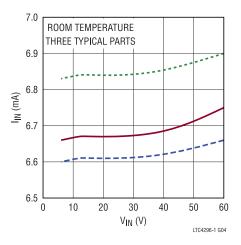


Figure 5. IIN vs. VIN, All Ports in POWER_ON State

Figure 6. I_{IN} vs. V_{IN}, All Ports in SLEEP State

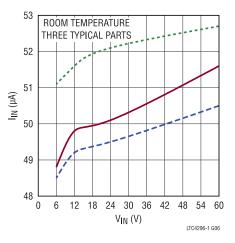


Figure 7. IIN vs. VIN, All Ports in DISABLED State

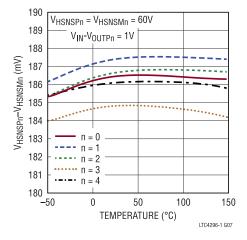


Figure 8. Analog Foldback Current Limit Threshold vs. Temperature

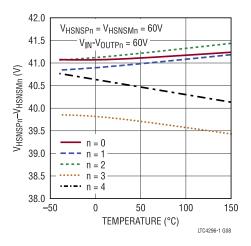


Figure 9. Analog Foldback Current Limit Threshold vs. Temperature

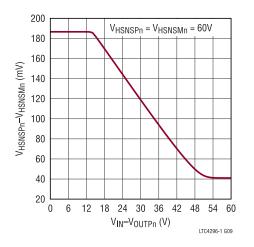


Figure 10. Analog Foldback Current Limit Threshold Voltage vs. VIN-VOUTPN

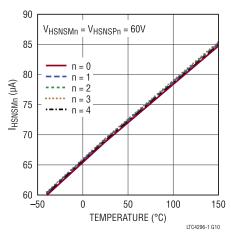


Figure 11. IHSNSMn vs. Temperature, Port in POWER_ON State

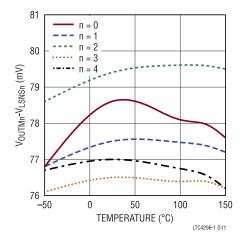


Figure 12. LGATE Circuit Breaker Threshold vs. Temperature

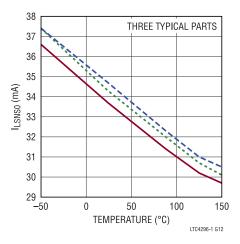


Figure 13. Deep Sleep Return Path Forward Fault Threshold vs. Temperature

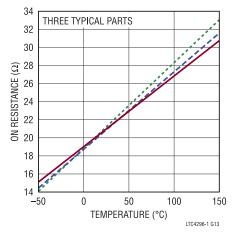


Figure 14. Deep Sleep Return Path On Resistance vs. Temperature

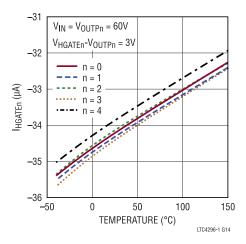


Figure 15. HGATEn Pull-Up Current vs. Temperature

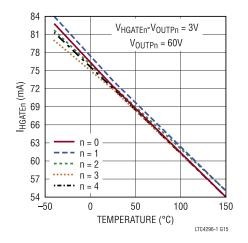


Figure 16. HGATEn Fast Pull-Down Current vs. Temperature

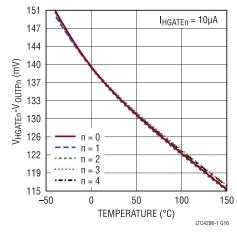


Figure 17. HGATEn Slow Pull-Down Dropout Voltage vs. Temperature

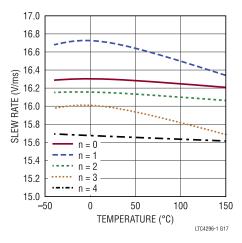


Figure 18. HGATEn Inrush Slew Rate vs. Temperature

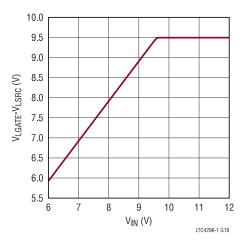


Figure 19. Low-Side N-Channel GATE Drive vs. V_{IN}

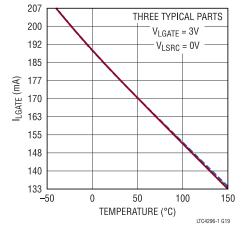


Figure 20. LGATE Pull-Down Current vs. Temperature, LGATE Disabled

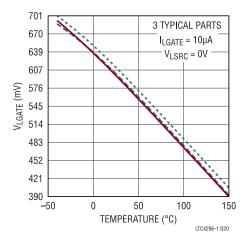


Figure 21. LGATE Pull-Down Voltage vs. Temperature

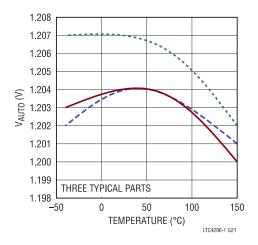


Figure 22. AUTO Input Threshold Voltage vs. Temperature, Rising-Edge

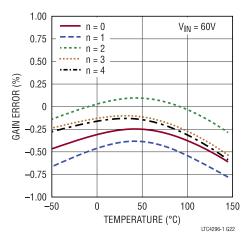


Figure 23. Port ADC Gain Error vs. Temperature

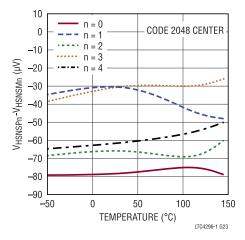


Figure 24. Port ADC Offset vs. Temperature

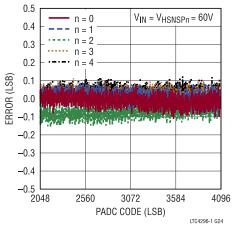
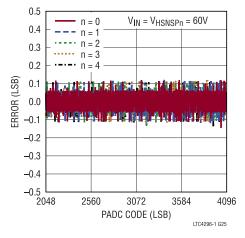



Figure 25. Port ADC INL

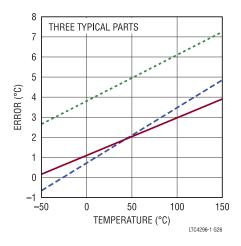


Figure 27. Internal Temperature Sensor Error vs. Temperature

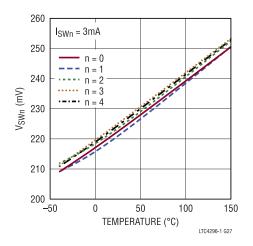


Figure 28. SWn Low Output Voltage vs. Temperature

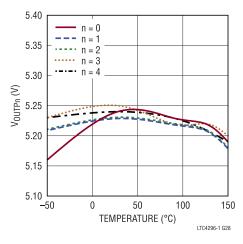


Figure 29. Open-Circuit Detection Voltage vs. Temperature



Figure 30. SLEEP State Open-Circuit Output Voltage vs. Temperature

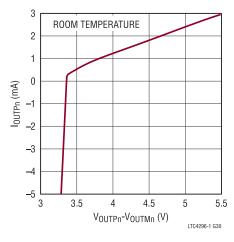


Figure 31. IOUTPn vs. VSLEEP

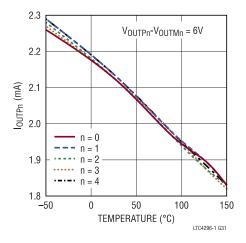


Figure 32. IDISCHARGE vs. Temperature

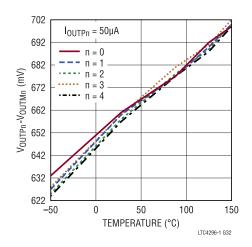


Figure 33. V_{DISABLE} vs. Temperature

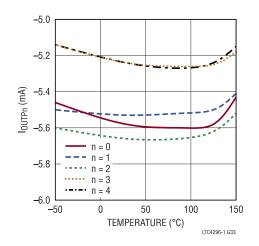


Figure 34. Short-Circuit I_{OUTPn} vs. Temperature, SLEEP State

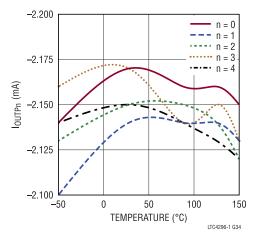


Figure 35. Valid Wakeup Current High Threshold vs. Temperature

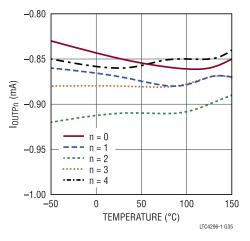


Figure 36. Valid Wakeup Current Low Threshold vs. Temperature

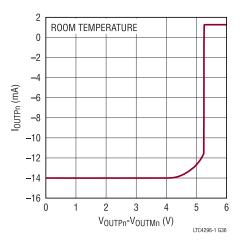
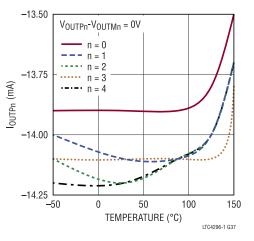
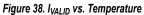




Figure 37. I_{VALID} vs. V_{OUTPn}-V_{OUTMn}

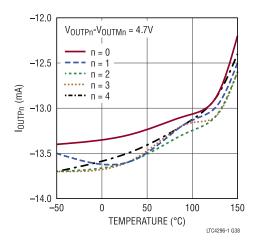


Figure 39. IVALID vs. Temperature

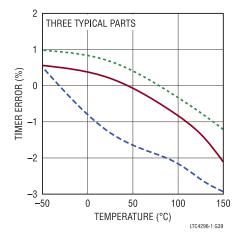


Figure 40. Timer Error vs. Temperature, IDLE, DETECTION/CLASSIFICATION, or POWER_ON States

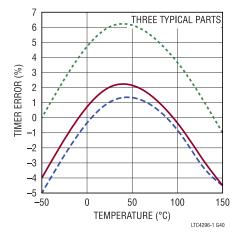


Figure 41. Timer Error vs. Temperature, All Ports DISABLED, or SLEEP States

PIN FUNCTIONS

Pin No.	Mnemonic	Description
Pins 1, 33, 37, 41, 45	OUTPn	Portn Positive Output. Connect to source of port n top- side external N-channel MOSFET. Do not connect if port n is unused.
Pins 2, 34, 38, 42, 46	HGATEn	Portn High-Side Gate Drive. Connect to gate of port n top-side external N-channel MOSFET. Do not connect if port n is unused.
Pins 3, 35, 39, 43, 47	HSNSMn	Portn High-Side Kelvin Sense Negative Input. Connect directly to the negative terminal of port n top-side current sense resistor. Connect the sense resistor negative terminal to the drain of port n top-side external N-channel MOSFET. If port n is unused, connect to HSNSPn.
Pins 4, 36, 40, 44, 48	HSNSPn	Portn High-Side Kelvin Sense Positive Input. Connect directly to the positive terminal of port n top-side current sense resistor. If port n is unused, connect to IN.
Pin 23	LGATE	Low-Side Gate Drive. If a low-side external N-channel MOSFET is present, connect to the MOSFET gate. Do not connect if a low-side external MOSFET is not present.
Pin 24	LSRC	Low-Side External MOSFET Source Connection. Connect to GND.
Pin 25	OUTMO	Port 0 Negative Output and Low-Side Kelvin Sense Positive Input. Connect directly to the positive terminal of port 0 low-side current sense resistor. Connect to LSNS0 if port 0 is unused.
Pin 26	LSNS0	Port 0 Low-Side Kelvin Sense Negative Input. Connect directly to the negative terminal of port 0 low-side current sense resistor. If a low-side external N-channel MOSFET is present, connect to the MOSFET drain. If a low-side external MOSFET is not present, connect to GND.
Pin 27	OUTM1	Port 1 Negative Output and Low-Side Kelvin Sense Positive Input. Connect directly to the positive terminal of port 1 low-side current sense resistor. Connect to LSNS1/2 if port 1 is unused.
Pin 28	LSNS1/2	Ports 1 and 2 Low-Side Kelvin Sense Negative Input. Connect directly to the negative terminals of port 0 and port 1 low-side current sense resistors. If a low-side external N-channel MOSFET is present, connect to the MOSFET drain. If a low-side external MOSFET is not present, connect to GND.
Pin 29	OUTM2	Port 2 Negative Output and Low-Side Kelvin Sense Positive Input. Connect directly to the positive terminal of port 2 low-side current sense resistor. Connect to LSNS1/2 if port 2 is unused.
Pin 30	OUTM3	Port 3 Negative Output and Low-Side Kelvin Sense Positive Input. Connect directly to the positive terminal of port 3 low-side current sense resistor. Connect to LSNS3/4 if port 3 is unused.
Pin 31	LSNS3/4	Ports 3 and 4 Low-Side Kelvin Sense Negative Input. Connect directly to the negative terminals of port 3 and port 4 low-side current sense resistors. If a low-side external N-channel MOSFET is present, connect to the MOSFET drain. If a low-side external MOSFET is not present, connect to GND.
Pin 32	OUTM4	Port 4 Negative Output and Low-Side Kelvin Sense Positive Input. Connect directly to the positive terminal

PIN FUNCTIONS

Pin No.	Mnemonic	Description
		of port 4 low-side current sense resistor. Connect to LSNS3/4 if port 4 is unused.
Pin 6	IN	Supply Voltage Input.
Pin 7	СРО	Charge Pump Output. Connect a 1nF, 16V capacitor from CPO to IN.
Pin 8	INT	Internal 4.3V Regulator Bypass. Connect a 470nF bypass capacitor from INT to GND.
Pin 9	SDI	SPI Serial Data Input.
Pin 10	SDO	SPI Serial Data Open-Drain Output. Connect to logic high through a pull-up resistor.
Pin 11	SCK	SPI Serial Clock Input.
Pin 12	CS	SPI Chip Select Input, Active Low.
Pin 13	AUTO	Auto Mode Enable for All Ports, Active High. Tie AUTO low to configure LTC4296-1 in manual mode for performing microcontroller assisted PD Classification. Tie AUTO high for applications that support physical detection. See Autonomous Mode section section for additional usage of the AUTO pin.
Pin 14	WAKEUP	Bidirectional Wakeup. During a PD initiated wakeup event on a port, the pin is pulled high to $3.75V$ with an internal 100μ A pull-up current. The pin is pulled down to GND by an internal $1.2M\Omega$ resistor. The pin may also be pulled to logic high externally, to wake up one or more ports. Do not connect if unused.
Pins 16, 17, 18, 19, 20	SWn	Open-Drain Snubber Switch Output for Portn, Active High. Drives an external N-channel MOSFET to disconnect the power snubber during classification. See Classification section. Do not connect if unused.
Pin 22	RT	Connect a 24.3k Ω resistor between RT and GND to set the internal oscillator frequency.
Pin 5, 15	DNC	Do Not Connect. Must be left unconnected.
Pin 21	GND	Device Ground.
Pin 49	GND	Exposed Pad and Device Ground. Must be soldered to PCB ground.

OVERVIEW

The LTC4296-1 is the world's first IEEE 802.3cg, Single-pair Power over Ethernet (SPoE) compliant Power Sourcing Equipment (PSE) controller. It controls and monitors power delivery for up to five Powered Devices (PDs). The complementary data protocol for SPoE is 10BASE-T1L.

With a host microcontroller, the LTC4296-1 provides the circuitry needed to implement an IEEE 802.3cg compliant PSE design. Additional required components include per port external, N-channel MOSFET and sense resistor to implement high-side electronic circuit breakers with foldback analog current limit. An optional low-side N-channel MOSFET, combined with per port low-side sense resistors can be used to implement a low-side electronic circuit breaker. The LTC4296-1 application circuit provides fault-tolerance mandated by IEEE 802.3cg, increases system reliability, and minimizes power losses compared to designs with onboard MOSFETs.

The source and return circuit breakers offer protection against the following output faults at the connector:

- Short between the two conductors
- ▶ Short of one or both conductor(s) to an external positive voltage
- Short of positive conductor to ground

The host microcontroller is used to configure the LTC4296-1 for PD classification by writing to the configuration registers using the Serial Peripheral Interface (SPI). The host microcontroller may also communicate with the LTC4296-1 via SPI to read telemetry such as port status, port voltages and currents, etc. The data integrity of the SPI is verified with the Packet Error Checking (PEC) feature.

Single-pair Power Over Ethernet (SPoE)

SPoE is a standard protocol for sending power over two-wire Ethernet data cables. SPoE is similar in concept to traditional Power over Ethernet (PoE) but differs significantly in definition and implementation. The differences stem mainly from the unique power coupling techniques used in a two-wire circuit, as opposed to PoE's 4- and 8-wire, pair-oriented powering techniques. SPoE enables the simultaneous transmission of power and data over a single conductor pair, e.g., balanced twisted pair or coaxial cable (Figure 42). Single pair Ethernet (SPE) data connections consist of a single pair of wires, AC coupled at each end to avoid ground loops. Unlike PoE systems that transmit power common mode to the data, SPoE systems diplex power and data over a single pair of conductors.

IEEE 802.3cg (SPoE) is an extension of 802.3bu Power over Data Lines (PoDL). The IEEE Standards Association ratified PoDL in 2016. Multiple complementary data standards are already ratified or in development, ranging from 10Mbps to 10Gbps and higher. PoDL defines protocols for detecting, classifying, powering, disconnecting, and standby power operation. IEEE 802.3cg was ratified in 2019 to add features targeting long reach protocols, such as 10BASE-T1L, with cable lengths of up to 1km.

SPoE was tailored to meet building and factory automation market requirements. It also defines the classification based power delivery protocol for the PSE and PD. Classification ensures PSE-PD compatibility and avoids applying power into a short or open circuit. The PSE performs detection, followed by classification, of the PD before applying full operating voltage. During classification the PSE requests information such as Class, Type, and Cable Resistance Measurement (CRM) support from the PD.

If the PSE determines the PD is compatible, it applies full operating voltage to the PD. If CRM is supported, the PSE and PD may negotiate allocation of surplus power to the PD. The PSE may skip classification and power up a PD that provides a valid detection signature. A PD providing an invalid detection signature, however, must undergo classification before being powered. A PD is required to present a valid MFVS to remain fully powered. If the PD is disconnected or goes to sleep, the PSE detects the absence of MFVS and removes full operating voltage. The PSE removes the output voltage entirely in the event of a fault or short circuit.

After removing the full operating voltage in the absence of MFVS, the PSE enters a low power sleep and provides V_{SLEEP} (3.3V typ) at the port.

Wakeup functions from sleep are flexible and can flow either upstream (PD initiated) or downstream (PSE initiated). The PD can request restoration of full operating voltage by presenting a wakeup current signature to the PSE. The PSE can also initiate a wakeup of the PD by providing full operating voltage after successful classification.

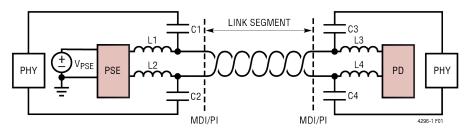


Figure 42. Basic SPoE Architecture

Class	Description	10	11	12	13	14	15
V _{PSE} (V)	PSE output voltage		20-30			50-58	
I _{PI(max)} (mA)	Cable current	92	240	632	231	600	1579
P _{CLASS(min)} (W)	PSE output power	1.85	4.8	12.63	11.54	30	79
V _{PD(min)} (V)	PD input voltage		14			35	
P _{PD(max)} (W)	PD power	1.23	3.2	8.4	7.7	20	52
$R_{LINK_SEG_LOOP}(\Omega)$	Cable resistance	65	25	9.5	65	25	9.5
Example Cable	· · · ·	Maximum Le	engths (m)				
14AWG	14 gauge cable	1000*	1000	400	1000*	1000	400
18AWG	18 gauge cable	1000	400	158	1000	400	158
24AWG	24 gauge cable	300	100	40	300	100	40

Table 3. IEEE 802.3cg Class Power Requirements Matrix for PSE and PD, and Example Link Segment Maximum Distances.

*IEEE 802.3cg limits cable length to 1000m

10BASE-T1L Field Switch PSE

The LTC4296-1 provides a solution for 10BASE-T1L field switches that require a PSE at each port.

Classification of the PD connected to each link segment ensures that the overall power provided to the switch is appropriately distributed across the sub-systems. An example of a 10BASE-T1L field switch is shown in Figure 43. The field switch host processor manages the 5x port Ethernet switch (Integrated MAC) and the LTC4296-1 over a SPI interface.

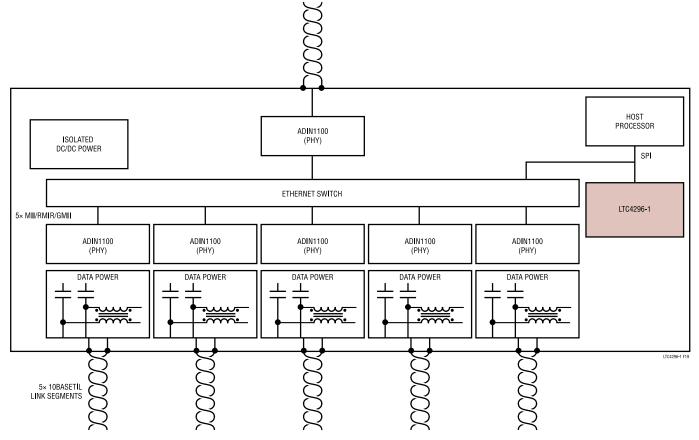


Figure 43. 10BASE-T1L PSE FIELD SWITCH

Classification for Discoverable Systems

SPoE Class defines the PSE output voltage range and maximum power being sourced or consumed in the system. PoDL comprises of Class 0 through 15. Class 10 through 15 are defined by IEEE 802.3cg for discoverable systems as shown in Table 3. Class 10 through 12 provide a 24V nominal PSE output voltage, as required by many industrial, factory automation, legacy building automation and "wet locations." Each of the three 24V classes represents a different cabling definition and accompanying maximum power transfer. Class 13 through 15 provide a 54V nominal PSE output voltage, to maximize power transfer without exceeding Safety Extra Low Voltage (SELV). Compatible SPoE PSE-PD Class pairs are shown in Table 4.

Table 4. PSE and PD Class Compatibility Matrix

				PSE Cla	SS		
		10	11	12	13	14	15
	10	Yes	Yes	Yes	No	No	No
s	11	No	Yes	Yes	No	No	No
PD Class	12	No	No	Yes	No	No	No
2	13	No	No	No	Yes	Yes	Yes
	14	No	No	No	No	Yes	Yes
	15	No	No	No	No	No	Yes

PoDL defines the Serial Communications Classification Protocol (SCCP) for classifying a PD. The SCCP uses three basic symbols: Initialization, Read-Slot, and Write-Slot. Application Note "Host Assisted SCCP with the LTC4296-1" provides a detailed description of SCCP.

IEEE 802.3cg also supports an optional CRM feature as part of SCCP. CRM allows a PSE to allocate additional power otherwise

allocated for cable loss to a PD when connected through less than maximum allowed cable resistance.

DATA SHEET FONTS

The register and bit names in this data sheet are referred to using **bold faced** font. The example below explains the conventions used to refer to the registers and their field.

- ▶ gfitst refers to Global Fault Status register (Address 0x01h)
- gfltev.command_fault refers to the Command Fault Bit (bit 3 at 0x02h) in the Global Fault Event register
- ► Families of registers or bits for individual ports are referred to with an bold faced italic "n" and the addresses for the same are referred to with an italic "m", where m = n + 1. For example, p0st refers to the Port 0 Status register (address 0x12h) and pnst refers to Portn Status register (address 0xm2h) where n takes values from 0 to 4.

USAGE CASES

802.3cg PSE

The primary usage case for the LTC4296-1 is an 802.3cg compliant PSE. Here, the LTC4296-1 AUTO pin is pulled low and a host operates the LTC4296-1 ports semi-manually through the states shown in Figure 44. In each state, the LTC4296-1 will control the port output voltage accordingly.

From a system power up or device reset, the LTC4296-1 starts in the DISABLED state. An LTC4296-1 port is enabled by the host and moves on to the IDLE state. It then awaits a command from the host to move on to the next state.

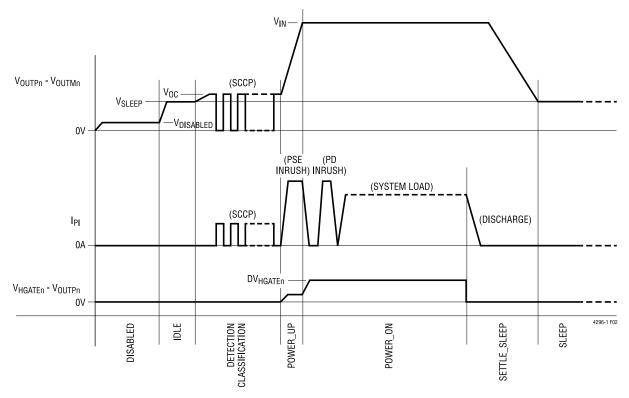


Figure 44. Simplified 802.3cg PSE State Sequence (Not to Scale)

When ready, the host configures the LTC4296-1 port to enter the DETECTION state; the LTC4296-1 checks the port current status before moving on to DETECTION.

When the port is in the DETECTION state, the host sets the LTC42961-1 to the CLASSIFICATION state and performs SCCP with a valid PD. Once the host micro-controller has determined the PD's Class is compatible, it may then command the port to enter the POWER UP state.

During the POWER_UP state, the LTC4296-1 controls inrush and monitors the port output voltage to determine when inrush is complete.

After a successful power up, the port enters the POWER_ON state and remains there until the LTC4296-1 detects a current overload fault or an MFVS timeout, or is instructed by the host to exit POWER_ON when power is no longer available.

If the LTC4296-1 removes power to the port due to invalid MFVS, it will monitor the port voltage discharge in the SETTLE_SLEEP state.

The LTC4296-1 enters the low power SLEEP state after a successful port discharge. Here the LTC4296-1 waits for the user, host or PD to initiate a wakeup before returning to the DETECTION state.

While in the IDLE, POWER_ON, SETTLE_SLEEP or SLEEP state, the LTC4296-1monitors the port for current overload fault condi-

tions. If one occurs, the LTC4296-1 will turn off the port and wait a set time in the OVERLOAD state before entering the IDLE state.

A port which fails to exit either the DETECTION or POWER_UP states successfully before the maximum allotted time will enter the RESTART state. It then waits a set time before re-entering the IDLE state.

Autonomous Mode

For applications that do not require classification, the LTC4296-1 can operate in an autonomous mode without a host controller with the AUTO pin pulled high. In autonomous mode, the LTC4296-1 will power up any port when a PD presents a valid detection signature. This mode is ideal for applications that only require a basic detection. Power up can be forced regardless of the detection signature by setting the signature override good bit (**pncfg1.sig_override_good**).

PORT STATE DESCRIPTIONS

Overview

Every port in the LTC4296-1 implements the PSE state described in the Usage Cases. A detailed description of each state is provided in the subsequent sections.

DISABLED State

A port starts in the DISABLED state after a power on or software reset event. In this state, the high-side MOSFET is turned off and the port voltage is discharged to less then V_{DISABLED} with an internal pull-down. The port remains here until it is enabled by the software enable bit (**pncfg0.sw_en**) or if the AUTO pin is high and not masked (**pncfg0.hw_en_mask**). Once enabled, the port enters the IDLE state.

IDLE State

In the IDLE state, the port output is biased by the LTC4296-1 to V_{SLEEP}. If the output voltage is in the range of V_{SLEEP}, output current is less than I_{WAKEUP(max)}, and the AUTO pin is high or Software PSE Ready is asserted (**pncfg0.sw_pse_ready**), the port proceeds to the DETECTION state. If the port current exceeds I_{WAKEUP} for t_{LIM SLEEP} the port will enter the OVERLOAD state.

DETECTION State

PD detection is performed in the DETECTION state. During detection a probing current, I_{VALID} , is sourced and the port searches for a PD. A PD not requiring classification presents a voltage in the range of V_{GOOD} PSE when the PSE applies the probing current.

A PSE must accept voltages as valid in the range of V_{GOOD_PSE} for at least t_{SIG_HOLD} and must reject voltages less than $V_{BAD_LO_PSE}$ or greater than $V_{BAD_HI_PSE}$ (dark shaded regions in Figure 46). A PSE may accept or reject voltages in the undefined ranges between the must-reject and must-accept limits (light shaded regions).

A port will exit the DETECTION state after t_{DET} unless the detection timer is disabled (**pncfg0.tdet_disable**). If the t_{DET} timer expires

without detecting a valid PD, the port enters the RESTART state and then returns to IDLE. Figure 45 shows a typical valid PD detection sequence.

For use cases not requiring classification, the following conditions need to be met to proceed to POWER_UP:

A valid detection signature is found (or the **pncfg1.sig_over**ride_good bit is set).

The Global Software Power Good bit is set (gcfg.sw_vin_pgood).

The Port Software Power Available bit is set (pncfg0.sw_power_available)

If the Port Software Power Available bit is not set, the port goes to the RESTART state after exiting the DETECTION state.

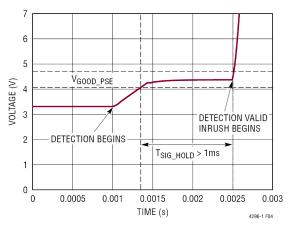


Figure 45. Typical Valid Detection Sequence Waveform

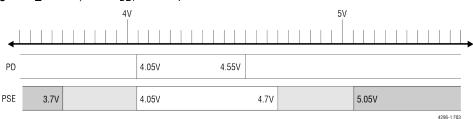


Figure 46. IEEE 802.3bu Signature Voltage Range

CLASSIFICATION State

Classification is performed in the DETECTION state by the host microcontroller using SCCP. Please refer to Application Note "Serial Communication Classification Protocol for 5-Port SPoE PSE Controller LTC4296-1" for a detailed description of how to implement SCCP with the host microcontroller.

Classification is configured by setting the Software PSE Ready bit (pncfg0.sw_pse_ready) and setting the Classification Mode bit (pncfg0.set_classification_mode) prior to entering the DETEC-TION state. When the Classification Mode bit is asserted while in the DETECTION state, the port SWn pin pulls low to disable the external port snubber switch MOSFET (M2).

If the microcontroller determines a valid PD with a compatible Class is present, the port can proceed to the POWER_UP state by setting Port Software Power Available (*pncfg0.sw_power_available*) and End_classification (*pncfg0.end_classification*).

If a PD with a valid signature or a PD with compatible Class is not present, the port can be returned to the IDLE state via the RESTART state by clearing Port Software Power Available and setting **pncfg0.end_classification**.

POWER_UP State

In the POWER_UP state, the port ramps up the HGATEn voltage in a controlled manner to limit inrush current. Under normal power up circumstances, the HGATEn voltage will increase until the port reaches the current sense resistor voltage limit, ΔV_{HSNS_ILIM} , or until the maximum HGATEn slew-rate, dV_{HGATEn}/dt is reached. The t_{INRUSH} timer is initiated upon entry of the POWER_UP state.

When the port output voltage has ramped-up, the port current will decrease and the HGATEn pin voltage will continue rising to fully enhance the external MOSFET. The final gate-to-source voltage for the MOSFET is ΔV_{HGATEn} . Power up is complete when the voltage between the IN pin and the port OUTPn pin drops below the high-side power good threshold voltage, ΔV_{OUTP} PWRGDn.

If inrush is not complete within t_{INRUSH} , the port enters the RESTART state and the port's t_{INRUSH} Timer Done bit is set (**pnev.tinrush_timer_done**). The t_{INRUSH} timer limit is programmable (**pncfg1.tinrush_timer**). If the inrush completes within t_{INRUSH} , the port proceeds to the POWER_ON state.

POWER_ON State

During operation in the POWER_ON state, the high-side output current is continuously monitored and limited by the port current sense ADC and an electronic circuit breaker with foldback Analog Current Limit (ACL), respectively. If the PD does not present a valid MFVS for more than t_{MFVDO} , the port goes to the SETTLE_SLEEP state and starts discharging the port output voltage to the range of V_{SLEEP} . If the host decides power is not available it can de-assert Port Software Power Available (**pncfg0.sw_power_available**), and the port will go to the RESTART state.

SETTLE_SLEEP State

In the SETTLE_SLEEP state, the port output is discharged to V_{SLEEP} by pull-down current $I_{DISCHARGE}$. If the output voltage discharges to V_{SLEEP} within t_{OFF} , the port goes to the SLEEP state. A port will enter the OVERLOAD state from the SETTLE_SLEEP state if it is unable to discharge the port output to V_{SLEEP} within t_{OFF} .

SLEEP State

In the SLEEP state, the port output is maintained at V_{SLEEP} and monitored for a wakeup signature current, I_{WAKEUP}, from the PD. The PSE enters the DETECTION state after a valid wakeup signature is detected for at least t_{WAKEUP}. A wakeup event can also be initiated by the PSE application host microcontroller via SPI or the WAKEUP pin.

In the SLEEP state, an internal LDO will continue to bias the port output voltage to V_{SLEEP}. A PD in the PD_SLEEP state consumes less than I_{SLEEP PD} (100µA). A PD may request the PSE re-apply full operating voltage by presenting the wakeup signature current, I_{WAKEUP PD} (1.3mA to 1.8mA) for at least t_{WAKEUP PD} (0.2ms minimum). If the PSE output current is in the range of I_{WAKEUP} for at least t_{WAKEUP}, the PSE is required to wake up and go to the DETECTION state. A PSE may or may not wake up in response to currents in the range of 0.5mA to 1.25mA and 1.85mA to 2.5mA. A PSE shall not wake up in response to currents less than 0.5mA or greater than 2.5mA. See Figure 47.

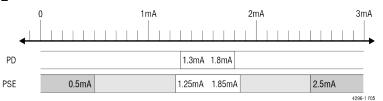


Figure 47. IEEE 802.3bu Wakeup Current Ranges

A port can disable PD initiated wakeup by setting the Upstream Wakeup Disable bit in the Port Configuration 0 register (**pncfg0.up-stream_wakeup_disable**).

A port can also be forced to exit the SLEEP state by setting the Software Wakeup bit (**pncfg0.sw_pse_wakeup**). Alternatively, if Downstream Wakeup Disable bit (**pncfg0.downstream_wakeup_disable**) is not set, then the port can be forced to exit the SLEEP state by raising the WAKEUP pin.

RESTART State

In the RESTART state the port output is biased to V_{SLEEP}. A port will wait for at least $t_{RESTART}$ before re-entering the IDLE state. The $t_{RESTART}$ timer limits are programmable (**pncfg1.tod_trestart_timer**).

OVERLOAD State

A current overload fault can occur during any state except the DISABLED or DETECTION states. This fault will cause the port to enter the OVERLOAD state.

In the OVERLOAD state, the port high-side MOSFET is turned off and the port output voltage is discharges to V_{DISABLE} . The port waits t_{OD} before going to the IDLE state. The t_{OD} timer limits are programmable (**pncfg1.tod_trestart_timer**).

Maintain Full Voltage Signature (MFVS)

MFVS detection guarantees full operating voltage is applied only when a PD is connected and requires full power. A PD must draw more than 11mA to ensure it continues to receive full operating voltage. In the POWER_ON state, a port must consider MFVS present when the port current exceeds I_{HOLD}(max) (10mA) for at least t_{MFVS}. Port MFVS is absent when the port current drops below I_{HOLD}(min)(2.5mA) for at least t_{MFVDO}. A port may consider MFVS present or absent when the port current is in the range of I_{HOLD} (Figure 48). If MFVS is absent, the port enters the SETTLE_SLEEP state and discharge the port output voltage to the range of V_{SLEEP}.

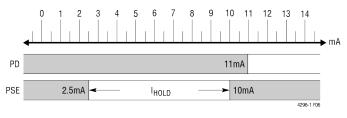


Figure 48. IEEE 802.3bu MFVS Current Ranges

The LTC4296-1 offers a number of advanced power management features. The WAKEUP pin can be used as a hardware interrupt to indicate a PD initiated wakeup or to forward a wakeup request, both of which can be disabled through SPI. The LTC4296-1 also has a very low current "Deep Sleep" mode, which is useful in battery powered applications, when all the ports are either in the DISABLED or SLEEP state.

A port can be forced to stay in the POWER_ON state if MFVS is absent by disabling the t_{MFVDO} timer (pncfg0.tmfvdo_timer_disable).

The MFVS threshold of a port is programmable (**pnadccfg.mfvs_threshold**). Equation 1 gives the optimum code as a function of the high-side sense resistor, R1; the value is rounded to the nearest integer.

MFVS Threshold Code = 62.5 • R1

(1)

HOST SERIAL INTERFACE

The LTC4296-1 communicates with the system host using SPI. The $\overline{\text{CS}}$ input allows the host to select end device at a time for serial communication when multiple end devices share a common SPI bus.

SPI Clock Phase and Polarity

The LTC4296-1 operates in SPI Mode 3 (CPOL = 1, CPHA = 0, idle CLK = 1). Consequently, data on SDI must be stable during the rising edge of SCK as shown in Figure 49 and Figure 50 (Write and Read, respectively).

Data Transfers

Every command (read or write) is 1 byte long consisting of 7-bits of address and 1 read/write bit. Every register value is 2 bytes long. The command and data are transferred with the most significant bit (MSB) first.

On a write, the data value on SDI is latched into the device on the rising edge of SCK (Figure 49). Similarly, on a read, the data value output on SDO is valid during the rising edge of SCK and transitions on the falling edge of SCK (Figure 50). CS must remain low for the entire duration of a command sequence, including between a command byte and subsequent data.

PEC Byte

The packet error code (PEC) byte is a cyclic redundancy check (CRC) value calculated for all the bits in a register group in the order they are passed, using the initial PEC value of 0x41 and the following characteristic polynomial: x8 + x2 + x + 1

To calculate the 8-bit PEC value, a simple procedure can be established:

1. Initialize the PEC to 0x41.

2. For each data bit (DIN) coming into the register group, set IN0 = DIN XOR PEC[7], then IN1 = PEC[0] XOR IN0, IN2 = PEC[1] XOR IN0.

3. Update the 8-bit PEC as PEC[7] = PEC[6], PEC[6] = PEC[5]..... PEC[3] = PEC[2], PEC[2] = IN2, PEC[1] = IN1, PEC[0] = IN0.

4. Go back to Step 2 until all data are shifted. The 8-bit result is the final PEC byte.

For a given SPI transaction, the PEC byte is calculated over the entire command byte which includes the address and a read/write bit, using the above procedure. The PEC byte is then re-initialized to 0x41 for subsequent data word reads or writes. The PEC byte is calculated for each data word separately.

LTC4296-1 calculates a PEC byte for any command or data received and compares it with the PEC byte received following the command or data. The command or data is regarded as valid only if the PEC bytes match. For a SPI read operation, LTC4296-1 attaches the calculated PEC byte at the end of the data it shifts out on the SDO pin. Serial data transactions with an invalid command byte sequence or PEC byte result in the Command Fault bit (gfltev.command_fault) or PEC Fault bit (gfltev.pec_fault), respectively, being set in the Global Fault Event register. The Global Command register can also be used to protect the registers from unintended writes by writing a code to disable the write access to the register map. To enable write access after a reset event, the host must first unlock the LTC4296-1 by writing the unlock key in the Global Command register (gcmd.write_protect). See Register Descriptions.

Figure 51 provides a pseudo code implementation of SPI write and read operations with PEC.

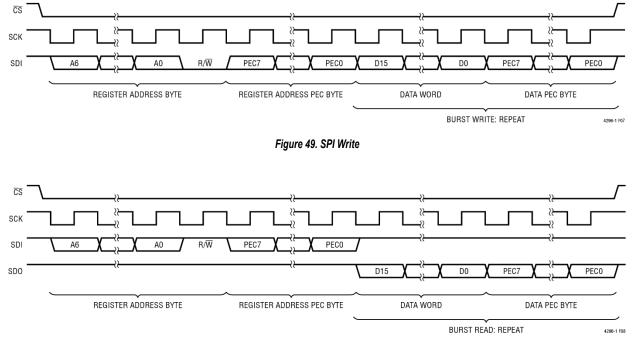


Figure 50. SPI Read

SAMPLE CODE

```
// Copyright 2022 Analog Devices, Inc.
// All rights reserved.
11
// EXAMPLE: LTC4296-1 SPI PEC Calculation and Read/Write Transactions in C
//*****
uint8 t get pec byte(uint8 t data, uint8 t seed)
{
   uint8_t pec = seed;
uint8_t din, in0, in1, in2;
    int bit;
    for(bit=7; bit>=0; bit--)
    {
        din = (data>>bit) & 0 \times 01;
       in0 = din ^ ( (pec>>7) & 0x01 );
in1 = in0 ^ ( pec & 0x01);
in2 = in0 ^ ( (pec>>1) & 0x01 );
        pec = (pec << 1);
        pec &= \sim (0x07);
        pec = pec | in0 | (in1<<1) | (in2<<2);
    }
    return pec;
}
void example_write(uint8_t register_address, uint16_t value)
    uint8 t tx buf[5];
    // command byte: register address with r/w bit
    tx_buf[0] = (register_address << 1) & ~(0x01); // r/w bit = 0 for write</pre>
    // pec byte from command byte
    tx buf[1] = get pec byte(tx buf[0], 0x41);
    // data word: 2 bytes, MSB first
    tx buf[2] = value >> 8; // MSB
    tx buf[3] = value & 0xFF; // LSB
    // pec byte from data word by using pec calculation twice
    uint8 t intermediate = get pec byte(tx buf[2], 0x41);
    tx_buf[4] = get_pec_byte(tx_buf[3], intermediate);
    // transmit 5 bytes on spi bus
    spi tx(tx buf, 5);
uint16_t example_read(uint8_t register address)
    uint8 t tx buf[2];
    uint8_t rx_buf[3];
    // command byte: register address with r/w bit
    tx buf[0] = (register address << 1) | 0x01;</pre>
    // pec byte from command byte
    tx buf[1] = get pec byte(tx buf[0], 0x41);
    // transmit command byte and pec byte
    spi tx(tx buf,2);
    // receive data word and pec byte into \ensuremath{\mathsf{rx\_buf}}
    spi rx(rx buf,3);
    // construct register value from received data word
    uint16 t register value = ((uint16 t)rx buf[0] << 8) |</pre>
(uint16_t) rx_buf[1];
    return register value;
```

Figure 51. Pseudo Code Implementation of SPI Write and Read Operations with PEC

õ	Table 5. Register Summary	×																	
RW		PORT	BIT 15	BIT 14	BIT 13	BIT 12	BIT 11	BIT 10	BIT 9	BIT 8	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0	RESET STATE
										_		-				-			
W1C	с	D						reserved						uvlo_dig ital	comman d_fault	pec_faul t	memory _fault	low_ckt _brk_fa ult	0x0010
RW	>	5						reserved	pev						comman d_fault	pec_faul t	memory fault	low_ckt _brk_fa ult	0x000F
2 2 2		0					reserved					sccp_su pport	wake_f wd_sup port			numports			0x0025
ß		D				reserved				pg_out4	pg_out3	pg_out2	pg_out1	pg_out0	pad_aut o	pad_wa keup	pad_wa keup_dri ve	reserve d	00000X0
2	R/W	D				SW_L	sw_reset							write_p	write_protect				0x00A 0
<u> </u>	R/W	D					rese	reserved					mask_lo wfault	tlim_dis able	tlim_time	tlim_timer_sleep	refresh	sw_vin_ pgood	0×0009
<u> </u>	R/W	g					reserved					gadc_sample_mod e	mple_mod e			gadc_sel			000000
	RO	D	reserved	rved	gadc_mi ssed	gadc_ne w						đă	gadc						0000x0
>	W1C	0			Lese	reserved			valid_si gnature	invalid_ signatur e	toff_time r_done	overload detecte disleep	overload detecte dipowe red	mfvs_ti meout	tinrush_t imer_do ne	pd_wak eup	lsns_for ward_fa ult	lsns_rev erse_fa ult	00000X0
<u> </u>	RO	0	resel	reserved	det_vhig h	det_vlo w	power_s table_hi	power_s table_lo	power_s table	overload _held	pi_sleep ing	pi_prebi ased	pi_detec ting	pi_powe red	pi_disch arge_en		pse_status		0000x0
Port0 Configuration																			
Ľ	RW	0	sw_inru sh	end_cla ssificatio n	set_clas sificatio n_mode	disable_ detectio n_pullup	tdet_dis able	foldback disable	soft_star t_disabl e	toff_time r_disabl e	tmfvdo_t imer_dis able	sw_pse _ready	sw_pow er_avail able	upstrea m_wake up_disa ble	downstr eam_wa keup_di sable	sw_pse wakeu p	hw_en_ mask	sw_en	0x0002
_						i		-		_	-	1							

analog.com

Table 5.	Table 5. Register Summary	Summai	Y																	
0x14	p0cfg1	RW	0				reserved				prebias_ override _good	tlim_timer_top	er_top	tod_trestart_timer	art_timer	tinrush_timer	timer	sig_over ride_ba d	sig_over ride_go od	0x0008
0x15	p0adccf g	R/W	0				reserved	ved							mfvs_threshold	reshold				0x0006
0x16	p0adcda t	RO	0	reserved		missed	new						source	source_current						0×0000
Port0 Diagnosis	agnosis																			
0x17	p0selfte st	RW	0	reserved														force_b ad_out m	force_b ad_outp	0000X0
Port1 Events	ents			-																
0x20	p1ev	W1C	0	reserved						valid_si gnature	invalid_ signatur e	toff_time r_done	overload detecte d_isleep	overload detecte dipowe red	mfvs_ti meout	tinrush_t imer_do ne	pd_wak eup	lsns_for ward_fa ult	lsns_rev erse_fa ult	00000X0
Port1 Status	atus			_					-											
0x22	p1st	RO	~	reserved		det_vhig h	det_vlo w	power_s table_hi	power_s table_lo	power_s table	overload _held	pi_sleep ing	pi_prebi ased	pi_detec ting	pi_powe red	pi_disch arge_en	pse_status	S		0000x0
Port1 Co	Port1 Configuration				-	-						-			-					
																-4				
0x23	p1cfg0	RW	0	sw_inru sh	end_cla_s ssificatio_s n_r	set_clas sificatio n_mode	disable_ detectio n_pullup	tdet_dis able	foldback _disable	soft_star t_disabl e	toff_time r_disabl e	tmfvdo_t imer_dis able	sw_pse _ready	sw_pow er_avail able	upstrea m_wake up_disa ble	downstr eam_wa keup_di sable	sw_pse _wakeu p	hw_en_ mask	ne_ws	0x0002
0x24	p1cfg1	RW	0	reserved							prebias_ override good	tlim timer top	top	tod trestart timer		tinrush timer	ner	sig_over ride_ba d	sig_over ride_go od	0x0008
0x25	p1adccf g	RW	-	reserved								mfvs_threshold	shold							0x0006
0x26	p1adcda t	RO	~	reserved		missed	new	source_current	rrent											0000X0
Port1 Diagnosis	agnosis																			
0x27	p1selfte st	RW		reserved														force_b ad_out m	force_b ad_outp	00000
Port2 Events	ents			-															-	
0X30	p2ev	W1C	0	reserved						valid_si gnature	invalid_ signatur e	toff_time r done	overload detecte d isleep	overload detecte d_ipowe red	mfvs_ti meout	tinrush_t imer_do ne	pd_wak eup	lsns_for ward_fa ult	lsns_rev erse_fa ult	00000X0
Port2 Status	atus											1								

Preliminary

REGISTER MAP

Rev. PrA | 29 of 46

			-	ver Jo						fa					yo Jo				
			sw_en	sig_over ride_go od				force_b ad_outp		lsns_rev erse_fa ult				sw_en	sig_over ride_go od				force_b ad_outp
	SI		hw_en_ mask	sig_over ride_ba d				force_b ad_out m		lsns_for ward_fa ult		SI		hw_en_ mask	sig_over ride_ba d				force_b ad_out m
	pse_status		sw_pse _wakeu p	ner						pd_wak eup		pse_status		sw_pse _wakeu p	ner				
	pi_disch arge_en		downstr eam_wa keup_di sable	tinrush_timer						tinrush_t imer_do ne		pi_disch arge_en		downstr eam_wa keup_di sable	tinrush_timer				
	pi_powe red		upstrea m_wake up_disa ble	irt_timer						mfvs_ti meout		pi_powe red		upstrea m_wake up_disa ble	irt_timer				
	pi_detec ting		sw_pow er_avail able	tod_trestart_timer						overload detecte dipowe red		pi_detec ting		sw_pow er_avail able	tod_trestart_timer				
	pi_prebi ased		sw_pse _ready	top	shold					overload _detecte d_isleep		pi_prebi ased		sw_pse _ready	top	plods			
	pi_sleep ing		tmfvdo_t imer_dis able	tlim_timer_top	mfvs_threshold					toff_time r_done		pi_sleep ing		tmfvdo_t imer_dis able	tlim_timer_top	mfvs_threshold			
	overload _held		toff_time r_disabl e							invalid_ signatur e		overload _held		toff_time r_disabl e	prebias_ override _good				
	power_s table		soft_star t_disabl e							valid_si gnature		power_s table		soft_star t_disabl e					
	power_s table_lo		foldback disable			Irrent						power_s table_lo		foldback disable			urrent		
	power_s table_hi		tdet_dis able	~		source_current						power_s table_hi		tdet_dis able			source_current		
	det_vlo w					new						det_vlo w		disable_ detectio n_pullup			new		
	det_vhig h					missed						det_vhig h		set_clas sificatio n_mode			missed		
														end_cla ssificatio n					
	reserved		reserved	reserved	reserved	reserved		reserved		reserved		reserved		sw_inru sh	reserved	reserved	reserved		reserved
	2		7	5	5	5		2		0		3		0	0	e	з		e
ummary	RO		RW	R/W	RW	RO		R/W		W1C		RO		RW	R/W	RW	RO		RW
Table 5. Register Summary	p2st	Port2 Configuration	p2cfg0	p2cfg1	p2adccf g	p2adcda t	Ignosis	p2selfte st	ents	p3ev	itus	p3st	Port3 Configuration	p3cfg0	p3cfg1	p3adccf g	p3adcda t	agnosis	p3selfte st
Table 5.	0x32	Port2 Co	0x33	0x34	0x35	0x36	Port2 Diagnosis	0x37	Port3 Events	0x40	Port3 Status	0x42	Port3 Co	0x43	0x44	0x45	0x46	Port3 Diagnosis	0x47

0x0002

0000×0

0x0006

0000X0

0000X0

0000X0

0000X0

0x0002

0x0008

0x0006

0000X0

00000X0

Preliminary

analog.com

force_b ad_outp 0x0000

Table 5. Reg Port4 Events	Table 5. Register Summary Port4 Events	Summai	٨																	
0x50	p4ev	W1C	0	reserved						valid_si gnature	invalid_ signatur e	toff_time r_done	overload detecte d_isleep	overload detecte dipowe red	mfvs_ti meout	tinrush_t imer_do ne	pd_wak eup	lsns_for ward_fa ult	lsns_rev erse_fa ult	00000×0
Port4 Status	atus																			
0x52	p4st	RO	4	reserved		det_vhig h	det_vlo w	power_s table_hi	power_s table_lo	power_s overload table _held		pi_sleep ing	pi_prebi ased	pi_detec ting	pi_powe red	pi_disch arge_en	pse_status	s		0000X0
Port4 Cc	Port4 Configuration	_	_	_				-	-			-				-				
0x53	p4cfa0	N N	0	sw_inru sh_	end_cla ssificatio n	set_clas sificatio n_mode	disable_ detectio n pullup	tdet_dis able	foldback disable	foldback t_disabl r_d disable e	time isabl	tmfvdo_t imer_dis able	sw_pse readv	sw_pow er_avail able	upstrea m_wake up_disa ble	downstr eam_wa keup_di sable	sw_pse _wakeu p	hw_en_ mask	sw en	0×0002
	-				_		1		1		prebias						-	sig_over	sig_over	
0x54	p4cfg1	RW	0	reserved							override good	tlim_timer_top	top	tod_trestart_timer	rt_timer	tinrush_timer	ner	ride_pa d	ride_go od	0x0008
0x55	p4adccf g	RW	4	reserved								mfvs_threshold	shold		-					0x0006
0x56	p4adcda t	ß	4	reserved		missed	new	source_current	rrent											0X0000
Port4 Diagnosis	agnosis																			
0x57	p4selfte st	RW	4	reserved														force_b ad_out m	force_b ad_outp	0000x0
FIELD A	FIELD ACCESS KEY:	EY:																		
RO = R(W1C = V	ead Only. N	lo effect	of write c	peration. N	o effect of r alue is 1. th	ead operat	ion. Reads will be set t	RO = Read Only. No effect of write operation. No effect of read operation. Reads back current value. W1C = Write 1 to Clear. If the bit in the written value is 1, then that bit will be set to 0, else it will not be affected. No effect of read operation. Reads back current value.	nt value. will not be	affected. N	o effect of r	ead operati	ion. Reads	back curre	ent value.					
	Read/Write.	Write ch	anges th	e value to t	he written v	alue. Read	has no eff	R/W = Read/Write. Write changes the value to the written value. Read has no effect. Reads back current value. W/V = Write Only Write chances the value to the written value. Bead has no effect. Read back value undefined/Ant	back curre	nt value.	unt care	- - -								
† Addres	sses not lis	ted in the	e table ar	e reserved	† Addresses not listed in the table are reserved and should not be written to.	not be writ	ten to.	0. 1004 04												

GLOBAL EVENTS

Table 6. gfitev (Address 0x02): Global Fault Event Register, Write 1 to Clear. Indicates Presence of Global Level Faults.

BIT(S)	NAME	DESCRIPTION
15:5	reserved	For future use
4	uvlo_digital	Set if digital core has been in UVLO. This is an unmaskable interrupt
3	command_fault	Set if an invalid or disallowed command has been sent by host. (e.g. accessing invalid register address)
2	pec_fault	Set if a PEC fault has occurred during SPI transaction
1	memory_fault	Set if fault(s) has/have occurred in memory
0	low_ckt_brk_fault	Set if one or more circuit breakers has/have been tripped in the return path or if there is a fault in the deep sleep return path

Table 7. gfltmsk (Address 0x03): Global Fault Event Mask Register, Read/Write. Provides Mask for the Global Level Fault Events.

BIT(S)	NAME	DESCRIPTION
15:4	reserved	For future use
3	command_fault	If this bit is cleared command interrupt is cleared
2	pec_fault	If this bit is cleared PEC interrupt is cleared
1	memory_fault	If this bit is cleared memory interrupt is cleared
0	low_ckt_brk_fault	If this bit is cleared return path interrupt is cleared

GLOBAL STATUS

Table 8. gcap (Address 0x06): Global Capability Register, Read Only. Presents Supported Features of PoDL Standard.

BIT(S)	NAME	DESCRIPTION
15:7	reserved	For future use
6	sccp_support	Set to 1 if Serial Communications Classification Protocol is supported (SCCP is not supported by the LTC4296-1 without external micro-controller support)
5	wake_fwd_support	Set to 1 if wakeup forwarding is supported (wakeup forwarding is supported by the LTC4296-1)
4:0	numports	Number of PSE ports

Table 9. giost (Address 0x07): Global Status Register, Read Only. Presents Status of the IOs.

BIT(S)	NAME	DESCRIPTION
15:9	reserved	For future use
8	pg_out4	Status of port4 power good
7	pg_out3	Status of port3 power good
6	pg_out2	Status of port2 power good
5	pg_out1	Status of port1 power good
4	pg_out0	Status of port0 power good
3	pad_auto	Status of AUTO pin
2	pad_wakeup	Status of WAKEUP pin as driven by the host
1	pad_wakeup_drive	Status of WAKEUP pin as driven by the IC
0	reserved	For future use

COMMAND

Table 10. gcmd (Address 0x08): Global Command Register, Read/Write. Entry Point for the Host to Configure the Chip.

BIT(s)	NAME	DESCRIPTION
15:8	sw_reset	After writing reset code (0x73) in this field, the digital logic is reset (software reset)
		After writing write unlock key (0x05), write access to all writeable registers is enabled. After writing write lock key (0xA0), write access to all writeable registers is disabled.
7:0	write_protect	Write access to this field is always enabled

CONFIGURATION

Table 11. gcfg (Address 0x09): Global Configuration Register, Read/Write. Enable the Host to Configure Global Functions.

BIT(S)	NAME	DESCRIPTION
15:6	reserved	For future use
5	mask_lowfault	Write 1 to prevent ports from entering overload due to low-side faults
4	tlim_disable	Write 1 to disable t _{lim} timers of all ports
		Configures the sleep regulator fault timer for all the ports and the deep sleep return path fault timer as shown below: 00b – 15.6ms 01b – 31.2ms 10b – 62.5ms (default)
3:2	tlim_timer_sleep	11b – disable sleep fault timers
1	refresh	Write 1 to copy contents from non-volatile memory into volatile memory. Auto cleared after completion.
0	sw_vin_pgood	Write 1 to indicate that the system is ready to source the required power to connected PD(s).

GLOBAL ADC

Table 12. gadccfg (Address 0x0A): Global ADC Configuration Register, Read/Write. Allows the Host to Configure the Global ADC.

BIT(S)	NAME	DESCRIPTION
15:7	reserved	For future use
		Configures global ADC in following modes as follows:
		00b – disabled
		01b – single-shot mode (auto cleared after one measurement)
		10b – continuous mode with low gain
6:5	gadc_sample_mode	11b – continuous mode with high gain
		Configures global ADC inputs as follows:
		00000b – GND
		00001b – V _{IN}
		00010b – Temperature
		00100b – Port 0 output voltage
		00101b – Port 0 return sense voltage
		00110b – Port 1 output voltage
		00111b – Port 1 return sense voltage
		01000b – Port 2 output voltage
		01001b – Port 2 return sense voltage
		01010b – Port 3 output voltage
		01011b – Port 3 return sense voltage
		01100b – Port 4 output voltage
		01101b – Port 4 return sense voltage
4:0	gadc_sel	1XXXXb – Internal check voltage reference

Table 13. gadcdat (Address 0x0B): Global ADC Data Rregister, Read Only. Allows the Host to Read the Latest Global ADC Measurement.

BIT(S)	NAME	DESCRIPTION
15:14	reserved	For future use
13	gadc_missed	Set when host has missed reading one or more result(s) stored by the global ADC in gadcdat.gadc
12	gadc_new	Set when a new result is stored by the global ADC in gadcdat.gadc
11:0	gadc	Global ADC accumulation result

PORTN EVENTS

BIT(S)	NAME	DESCRIPTION
15:10	reserved	For future use
9	valid_signature	Set when a valid signature was detected on the port
8	invalid_signature	Set when an invalid signature was detected on the port
7	toff_timer_done	Set when t _{OFF} timer expired when port was discharging toward V _{SLEEP}
6	overload_detected_isleep	Set when overload timer t _{LIM} expired due to overcurrent while the port was attempting to apply V _{SLEEP} at the PI
5	overload_detected_ipowered	Set when overload timer t _{LIM} expired due to overcurrent while the port was in the POWER_UP or POWER_ON state
4	mfvs_timeout	Set when power was removed due to t _{MFVDO} timer expiration
3	tinrush_timer_done	Set when t _{INRUSH} timer expired when the port was in the POWER_UP state
2	pd_wakeup	Set when an upstream (PD initiated) wakeup was detected i.e. the port current was in the valid wakeup current range for at least t _{WAKEUP} when the port was in the SLEEP state
1	Isns_forward_fault	Set when low-side forward circuit breaker fault event has occurred on the port
0	lsns_reverse_fault	Set when low-side reverse circuit breaker fault event has occurred on the port

PORTN STATUS

Table 15. pnst (Address 0xm2): Portn Status Register, Read On	ly. Provides Status of Portn Events.
	, i oran otatao negioten, neua om	

BIT(S)	NAME	DESCRIPTION	
15:14	reserved	For future use	
13	det_vhigh	Set when port voltage is greater than V _{BAD_HI_PSE} during DETECTION	
12	det_vlow	Set when port voltage is less than V _{BAD_LO_PSE} during DETECTION	
11	power_stable_hi	Set when following inrush port is sourcing full operating voltage and $V_{IN} - V_{OUTPn}$ is less than ΔV_{OUTP_PWRGDn}	
10	power_stable_lo	Set when following inrush port is sourcing full operating voltage and V_{OUTMn} less than delta ΔV_{OUTM_PWRGDn}	
9	power_stable	Set when the port is delivering full operating voltage to the output.	
8	overload_held	Set when the port is in the OVERLOAD state	
7	pi_sleeping	Set when the port is in the SETTLE_SLEEP or SLEEP state	
6	pi_prebiased	Set when the port is in the IDLE state	
5	pi_detecting	Set when the port is in the DETECTION state	
4	pi_powered	Set when the port is in the POWER_UP or POWER_ON state	
3 pi_discharge_en Set when the port is in the SETTLE_SLEEP state		Set when the port is in the SETTLE_SLEEP state	
		PSE status decoded as below:	
		000b – Port is disabled	
		001b – Port is in sleeping	
		010b – Port is delivering power	
		011b – Port is searching	
		100b – Port is in error	
		101b – Port is idle	
		110b – Port is preparing for detection	
2:0	pse_status	111b – Port is in an unknown state	

PORTN CONFIGURATION

Table 16. pncfg0 (Address 0xm3): Portn Configuration Register 0, Read/Write, 0x0002; Provides Portn Configuration.

BIT(S)	NAME	DESCRIPTION
15	sw_inrush	Write 1 to skip prebias and detection and directly power up the PD
14	end_classification	Write 1 to end classification. Auto cleared by the IC.
13	set_classification_mode	Write 1 to set the port in Classification mode
12	disable_detection_pullup	Write 1 to disable detection pullup current
11	tdet_disable	Write 1 to disable detection timer
10	foldback_disable	Write 1 to disable foldback during port inrush in the POWER_UP state
9	soft_start_disable	Write 1 to disable soft start during port inrush in the POWER_UP state
8	toff_timer_disable	Write 1 to disable the t _{OFF} timer to allow the port arbitrarily long time for discharging in the SETTLE_SLEEP state
7	tmfvdo_timer_disable	Write 1 to disable the t _{MFVDO} timer to prevent the port from shutting off in absence of a valid MFVS
6	sw_pse_ready	Write 1 to indicate that the port is ready for detection
5	sw_power_available	Write 1 to indicate that the port is able to source power to the connected PD
4	upstream_wakeup_disable	Write 1 to disable the upstream (PD initiated) wakeup of the port
3	downstream_wakeup_disable	Write 1 to disable the downstream (PSE initiated) wakeup of the port
2	sw_pse_wakeup	Write 1 to wake up the port
1	hw_en_mask	Write 0 to mask the AUTO pin
0	sw_en	Write 1 to enable the port

BIT(S)	NAME	DESCRIPTION	
15:9	reserved	For future use	
8	prebias_override_good	Write 1 to simulate a valid wakeup signature	
7:6			
		00b – 59.9ms (default)	
		01b – 29.9ms	
		10b – 15ms	
		11b – 0.46ms	
		Note: t _{LIM} timer will decrement towards zero in presence of fault event and increment towards the configured value in absence	
		of fault event. The decrement rate will be 8x the increment rate	
5:4	tod_trestart_timer	Write as below to configure the overload delay timer and restart timer:	
		00b – default (t _{OD} = 1.1s, t _{RESTART} = 551ms)	
		01b – 2x of default	
		10b – 4x of default	
		11b – forever	
3:2 tinrush_timer Write as below to configure the t _{inrush} timer:		Write as below to configure the t _{inrush} timer:	
		00b – 3.5ms	
		01b – 14ms	
		10b – 56.2ms(default)	
		11b – forever	
1	sig_override_bad	Write 1 to simulate an invalid detection voltage signature	
0	sig_override_good	Write 1 to simulate a valid detection voltage signature	

Table 17. pncfg1 (Address 0xm4): Portn Configuration Register 1, Read/Write. Provides Portn Configuration.

Table 18. pnadccfg (Address 0xm5): Portn ADC Configuration Register, Read/Write. Provides Portn ADC configuration.

BIT(S)	NAME	DESCRIPTION
15:8	reserved	For future use
7:0	mfvs_threshold	MFVS threshold to be set based on Equation 1

Table 19. pnadcdat (Address 0xm6): Portn ADC Data Register, Read Only. Allows the Host to Read the Latest Portn ADC measurement.

BIT(S)	NAME	DESCRIPTION
15:14	reserved	For future use
13	missed	Set when host has missed one or more measurements of source current stored in pnadcdat.source_current
12	new	Set when a new measurement result of source current is stored by the port ADC in pnadcdat.source_current
11:0	source_current	Source current measurement

PORTN DIAGNOSIS

Table 20. pnselftest (Address 0xm7): Portn Self Test Register, Read/Write. Enable the Host to Perform Diagnosis on Portn.

BIT(S)	NAME	DESCRIPTION	
15:2	reserved	For future use	
1	force_bad_outm	Write 1 to simulate a power bad on OUTM pin of the port	
0	force_bad_outp	Write 1 to simulate a power bad on OUTP pin of the port	

APPLICATION OVERVIEW

Figure 52 shows a typical LTC4296-1 circuit for one of five ports. Each port high-side electronic circuit breaker with foldback analog current limit (ACL) controls inrush current during power up and protects against output faults. The circuit breaker controls N-channel MOSFET M1's gate-to-source voltage with the HGATEn and OUTPn pins while monitoring current sense resistor R1's voltage with the HSNSPn and HSNSMn pins. The port power snubber (R3 + R4, C4) stabilizes the ACL; it is disconnected by MOSFET M2 during classification. The auxiliary snubber (R5, C5) provides a well-defined AC impedance when switch M2 is disabled. The MOSFET M3 is driven by the host microcontroller to assert a logic low during SCCP write operation. The NPN transistor Q1 limits the voltage sensed by the microcontroller during SCCP.

Power controlled by the LTC4296-1 and data from a PHY, such as the ADIN1100, are coupled to the port through a power coupling network circuit. A common mode choke (CMC) and diplexer inductors comprise the power coupling network as further discussed in the Power Coupling Networks section.

POWER SUPPLY

When selecting a power supply, the tolerance of the supply and the voltage drops across the power path components at the highest PD load must fall within the V_{PSE} range specified in Table 1 for the desired Class. The LTC4296-1 is designed to service up to five ports that share the same voltage class (24V or 54V).

In order to ensure data integrity, the PSE power supply at the LTC4296-1 input needs to meet ripple specifications as required by IEEE 802.3cg. Ripple should be measured at the medium dependent interface (MDI) connector with a DSO using the AC coupled 100 Ω resistor and scope probe shown in Figure 53. The observed ripple should be less than 0.1V_{PP} in a bandwidth of 1kHz to 10MHz. The observed ripple is then post processed with a transfer function H(*f*) given by Equation 2 and should be less than 0.01V_{PP} in a bandwidth of 1kHz to 10MHz.

$$H(f) = \frac{f}{\sqrt{f^2 + f_0^2}} \text{ where } f_0 = 100 \text{ kHz}$$
(2)

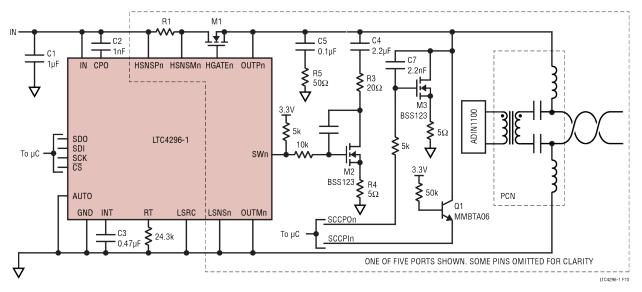


Figure 52. Typical LTC4296-1 Circuit (1 of 5 ports Shown)

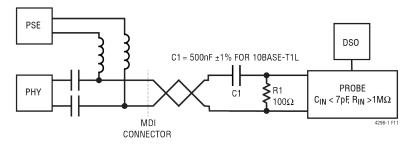


Figure 53. Power Supply Ripple Measurement Setup

EXTERNAL COMPONENT SELECTION

Typical application components for Class 10-14 are shown in the Figure 54 schematic and table. Typical application components for Class 15 are shown in Figure 55 schematic. Additional guidance on selecting components is provided here.

Capacitors

The LTC4296-1 IN pin operates from an input voltage between 6V and 60V. A low ESR decoupling capacitance (C1) of at least 1μ F should be placed from IN to GND. Common ceramic capacitors have significant voltage coefficients; the capacitance is reduced as the applied voltage increases. To minimize this problem, the IN pin bypass capacitor should be rated X7R and twice the maximum operating voltage.

The LTC4296-1 generates its own internal supplies at the INT and CPO pins. A 470nF, 6.3V decoupling capacitor (C3) should be placed from INT to GND and a 1nF, 16V decoupling capacitor (C2) should be placed from CPO to IN. Capacitors C1, C4, C5, C6, C7, C8, and C9 must have proper supply voltage ratings for the Class Applications.

Input TVS

A TVS across the supply helps protect the LTC4296-1 (and any other device on this rail) from overvoltage due to supply spike during a cable surge or forced backfeed voltages. The TVS clamp voltage and power rating should meet the surge current requirements and maximum voltage ratings of devices on the rail.

High-Side MOSFET

The LTC4296-1 provides a foldback ACL feature which reduces the port current limit threshold voltage when the MOSFETs drain

to source voltage exceeds 12V. Foldback may be disabled via software. A port high-side N-channel MOSFET (M1) with adequate safe operating area (SOA) consistent with the foldback analog current limit profile must be used to ensure reliability during inrush and short-circuit conditions. Refer to the Analog Foldback Current Limit Threshold Voltage vs. $V_{IN} - V_{OUTPn}$ typical curve. This curve is scaled for current with the port's sense resistor value for comparison against a MOSFET SOA curve. The MOSFET SOA curve must meet this foldback curve for t_{INRUSH} and t_{LIM} , and the system's maximum operating ambient temperature.

Additional considerations when selecting a MOSFET are $R_{DS(ON)}$ and V_{DS} . Low $R_{DS(ON)}$ will minimize heat losses for port DC currents. The drain-source voltage must be specified above the power supply peak voltage.

Figure 54 and Figure 55 provide a high-side N-channel MOSFET recommendation that meets the SOA requirements for each respective Class.

High-Side Sense Resistor

The LTC4296-1 is designed to work with a range of sense resistors required to meet IEEE 802.3cg's power Class requirements. A sense resistor for each port sets the respective port's high side ACL current threshold (I_{LIM}) per Equation 3. The ACL threshold must be in the range $I_{PI(MAX)} < I_{LIM} < 1.41 \cdot I_{PI(MAX)}$.

 $R1 < \Delta V_{HSNS \ ILIM(MIN)}/I_{LIM} (\Omega)$

CLASS 14

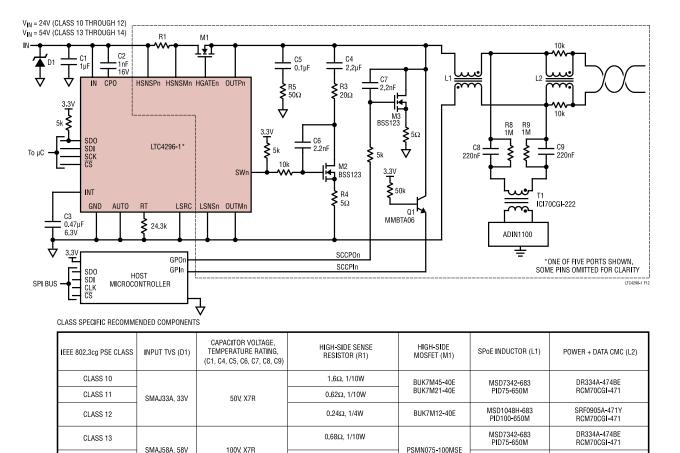
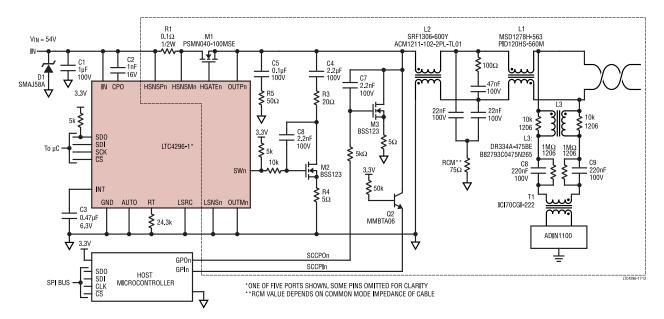
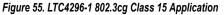




Figure 54. LTC4296-1 802.3cg Class 10 through 14 Application

0.27Ω, 1/4W

MSD1048H-683 PID100-650M SRF0905A-471Y RCM70CGI-471

The sense resistors should have $\pm 1\%$ tolerance or better and no more than a ± 200 ppm/°C temperature coefficient. Appropriate wattage should be selected for the sense resistors per Equation 4. It is good practice to select a power rating for at least double the resistor application power.

 $P_{R1} > 2 \cdot (\Delta V_{HSNS_ILIM9(MAX)})^2 / R_1 (W)$ (4)

Figure 54 and Figure 55 provide a high-side sense resistor value and power rating for each 802.3cg power class.

Refer to the Layout Guidelines section for proper Kelvin Sensing with the sense resistor.

Power Coupling Networks

Power and data are coupled together at the MDI through a Power Coupling Network (PCN). The PHY is AC coupled through a data transformer (T1). The PSE DC power is coupled on to the differential data lines through the Differential Mode Inductor (DMI), L1. The Common Mode Choke (CMC), L2, blocks common mode signals at the MDI.

The DMI (L1) and CMC (L2) must be selected to meet the droop, return loss and mode conversion specifications as defined in the IEEE 802.3cg for the respective maximum power Class.

Figure 54 shows a PHY-side PCN topology; power is injected through the DMI (L1) on the PHY-side of the CMC (L2). Power and data is passed through the CMC. DC blocking capacitors (C8, C9) with balancing resistors (R8, R9) prevent the SPoE DC current from passing through transformer T1. This topology is recommended for Class 10 through 14.

Figure 55 shows a line-side (cable side) PCN topology for Class 15; power is injected through the DMI (L1) on the line-side of the PHY CMC (L3). L2 is the power path CMC and L3 is the data-only CMC. Capacitor, C8, blocks SPoE DC current from flowing through transformer T1.

Output Power Snubber

An output power snubber, comprised of a 2.2μ F, X7R capacitor (C4) in series with a resistance (R3 + R4), from each port's OUTP to OUTM pins is required for current limit stability during startup or overload. The voltage rating of C4 must be at least twice the maximum operating voltage to account for capacitor voltage coefficients. For calculating R3 resistance, use Equation 5. Choose the nearest 5% resistor values.

$$R3 = 2 \bullet \sqrt{\frac{L_{\text{DIFF}}}{C4}} - R4$$
(5)

 L_{DIFF} is the differential inductance between OUTPn and OUTMn at L1. If L1 is a DMI (coupled inductor) use the calculated differential inductance of four times the single winding inductance. The 5Ω resistor (R4) limits the current through M2.

Low-side Circuit Breaker

A low-side circuit breaker can be implemented if protection against excessive low-side currents is required. This low-side circuit breaker disconnects the ground connection to all ports. See Figure 56.

The LTC4296-1 low-side circuit breaker controls the N-channel MOSFET (M4) gate-to-source voltage with the LGATE and LSRC pins. M4 is fully enhanced when the first port enters the IDLE state. Low-side current is monitored with the voltage across sense resistor R2 measured at the LSNSn and OUTMn pins. Ports 1 and 2 share the LSNS1/2 sense pin, and ports 3 and 4 share the LSNS3/4 sense pin. A low-side current causing any of the low-side sense resistor voltage to exceed ΔV_{LSNS} FCBn for t_{LSNS} FAULT trips the circuit breaker; all LTC4296-1 ports that are out of the DISABLED state are forced to the OVERLOAD state.

Each port's low-side sense resistor R2 sets the low-side circuit breaker current threshold for that port. This current threshold should be set for over 50% higher than the high-side ACL threshold for the corresponding port. Use Equation 6 for calculating the value for R2 where I_{CB} is the circuit breaker current threshold.

$$R2 = \langle \Delta V_{LSNS \ FCBn(MIN)} / I_{CB} (\Omega)$$
(6)

Appropriate wattage should be selected for the sense resistors per Equation 7. It is good practice to select a power rating for at least double the resistor application power.

$$P_{R2} > 2 \cdot (\Delta V_{LSNS_FCBn(MAX)})^2 / R2 (W)$$
(7)

Refer to the Layout Guidelines section for proper Kelvin Sensing with the sense resistor.

Figure 57 provides recommended R2 resistor values and power ratings per maximum port power class. Refer to the layout guidelines for proper Kelvin sense layout with the low-side sense resistor.

The low-side circuit breaker MOSFET must have an adequate V_{DS} rating for the maximum system application and fault conditions. Since this MOSFET is for fast circuit breaking and not current limiting, high SOA is not required compared to the high-side MOSFET. Low $R_{DS(ON)}$ helps minimize losses.

An internal switch from LSNS0 to GND establishes a return path for all the OUTMn pins to ground when the low-side MOSFET is disabled, e.g. DISABLED or DEEP SLEEP. RSLP_LSNS0 is the on resistance for deep sleep return. The deep sleep return switch is always on unless the low-side circuit breaker trips or an overcurrent fault occurs and will turn back on after a restart delay.

MDI FAULT TOLERANCE

Most applications with isolation will only require the high-side circuit breaker as shown on the front page application circuit. For applications requiring MDI fault tolerance from an external, positive or negative, forced voltage at the MDI, Figure 57 provides a protection solution.

A rectifying circuit or device before the IN pin protects components at the supply from a positive backfeed voltage greater than the supply voltage.

The low-side circuit breaker, a low-side snubber (C9 and R9), a current steering diode (D2), and a TVS (D1) protect the PSE from negative voltages at the MDI. When a forced negative voltage is ap-

plied, D2 provides a return path for the low-side current through M4. When the low-side circuit breaker trips, M4 is open and capacitor C10 absorbs the inductive kickback. D2 continues to conduct until the snubber is charged to the forced negative voltage. High voltage ringing at LSNSn is steered by D3 to the TVS D1. The port is held in the OVERLOAD state during this fault.

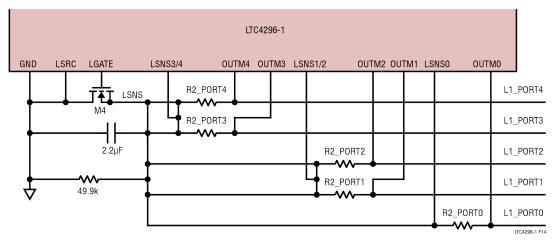


Figure 56. Low-Side Circuit Breaker

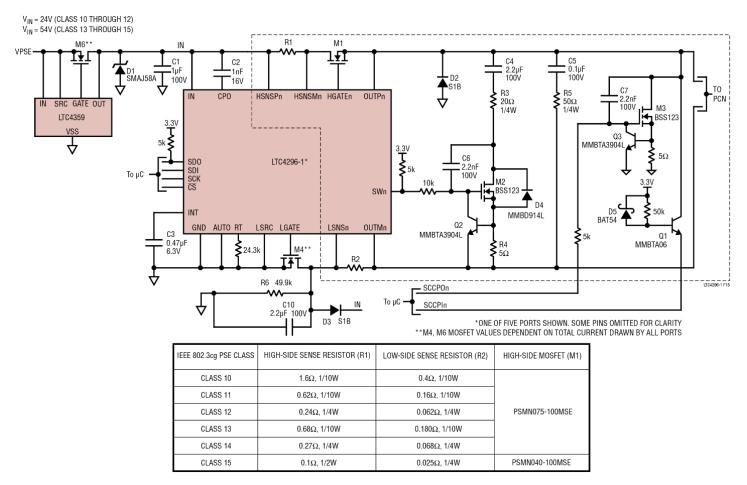


Figure 57. LTC4296-1 PSE Port with MDI Fault Tolerance

LAYOUT GUIDELINES

Refer to the EVAL-LTC4296-1-AZ/BZ demo board as a layout reference. Standard power layout guidelines apply to the LTC4296-1, such as placing the decoupling caps for the IN, V_{INT} , and CPO supplies near their respective supply pins, use of ground planes, and use of wide traces wherever there are significant currents.

Kelvin Sense

Kelvin sense connections to the current sense resistors should always be used to ensure the specified current threshold accuracy is achieved. Figure 58 shows an example of proper Kelvin sensing for the high-side sense pins HSNSPn and HSNSMn to the respective sense resistor.

For applications that implement the optional low-side circuit breaker, care must be taken to minimize stray currents at the shared Kelvin signal LSNS1/2 between ports 1 and 2, and LSNS3/4 between ports 3 and 4. The OUTM1, OUTM2, OUTM3, and OUTM4 pins must also have proper Kelvin sense to the respective sense resistor. See Figure 59. For the LSNS0 and OUTM0 signals, use the same Kelvin sense technique as shown for HSNSPn and HSNSMn in Figure 58.

DATA CONVERTERS

Internal Temperature Sensor

The internal junction temperature can be measured by programming the Global ADC Configuration register to select temperature sensor as the ADC input and enable the ADC for singleshot or continuous mode measurement (gadccfg.gadc_sel and gadccfg.gadc_sample_mode, respectively). The ADC results are available in the Global ADC Data register when the measurement is completed (gadcdat.gadc) after approximately 3.6ms and is updated every 1.8ms thereafter in continuous mode. The LTC4296-1 sets the GADC New Data bit (gadcdat.gadc_new) when the new measurement is available to read. The junction temperature (T_J) readout in °C can be determined by the following equation:

$$T_{J}(^{\circ}C) = \frac{gadcdat.gadc - 2048}{4} - 273.15$$
(8)

(10)

(11)

APPLICATIONS INFORMATION

Port High-Side Current Readback

The port high-side current sense resistor voltage can be measured by reading the Port ADC result register (**pnadcdat.source_current**) while in the POWER_UP and POWER_ON states. The port ADC result register is updated every 1.8ms. The expression for the source current (I_{SOURCE}) readout as a function of the high-side current sense resistor (R1), can be determined by the following equation:

 $I_{SOURCE}(A) =$

(pnadcdat.source_current - 2048) • 10 ⁽⁹⁾

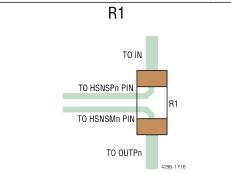
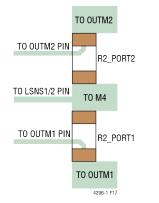
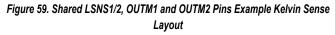




Figure 58. HSNSPn and HSNSMn Pin Kelvin Connection

Port Low-Side Current Readback

The port low-side current (I_{RETURN}) sense resistor voltage can be measured by programming the Global ADC Configuration register to select a port low-side current as the ADC input and enable the ADC for single-shot or continuous mode measurement (**gadccfg.gadc_sel** and **gadccfg.gadc_sample_mode**, respectively). The ADC results are available in the Global ADC Data register when the measurement is completed (**gadcdat.gadc**) after approximately 3.6ms and are updated every 1.8ms thereafter in continuous mode. The expression for current as a function of the high-side current sense resistor (R2) can be determined by the following equation: $I_{RETURN}(A) =$ (gadcdat.gadc - 2048) • 100µV

R2

Input And Port Output Voltage Readback

The input voltage (V_{IN}) and port output voltage (V_{PORT})can be measured by programming the Global ADC Configuration register. Select input voltage V_{IN}, or port output voltage (V_{PORT} = V_{OUTPn}-V_{OUTMn}) as the ADC input and enable the ADC for singleshot or continuous mode measurement (gadccfg.gadc_sel and gadccfg.gadc_sample_mode, respectively). High-gain or low-gain resolution may be selected in continuous mode. The ADC results are available in the Global ADC Data register when the measurement is completed (gadcdat.gadc) after approximately 3.6ms and is updated every 1.8ms thereafter in continuous mode. The expression for input and port output voltage can be determined by the following equations:

Low-Gain $V_{IN}(V), V_{PORT}(V) =$ (gadcdat.gadc - 2048) • 35.2mV

High-Gain $V_{IN}(V), V_{PORT}(V) =$ (gadcdat.gadc - 2048 • 17.6mV

ISOLATION CONSIDERATIONS

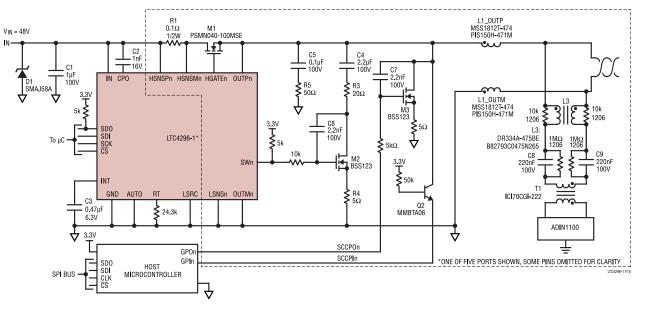
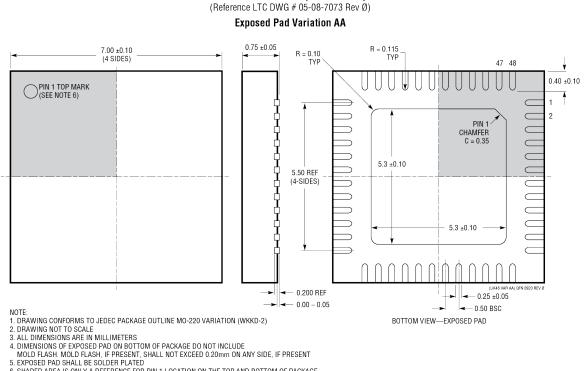
Traditional IEEE 802.3 multi-pair Ethernet specifications require that network segments (including PoE circuitry) be electrically isolated from the chassis ground of each network interface device. However, IEEE 802.3bu (PoDL) and IEEE 802.3cg (SPoE) only require that the PD provides at least 1 M Ω isolation between all accessible external conductors and the MDI, when measured using 5V ± 20%. Both of these standards also require that all equipment comply with local, state, national, and application specific standards, such as the applicable sections of IEC 61010-1 or IEC 62368-1:2018.

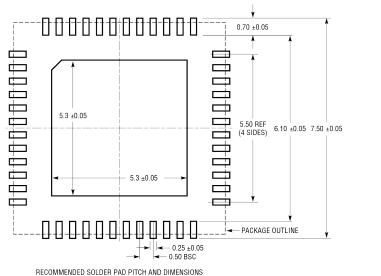
For simple devices with no electrically conducting pins other than the twisted-pair Ethernet MDI, the isolation requirement can be met by using a non-conductive chassis enclosure.

For SPoE applications that require galvanic isolation from chassis, an isolated power supply must be used to power the LTC4926-1 and SPoE. Any I/O crossing the isolation must have some form of high-voltage tolerant coupling. Proper layout techniques must be implemented to maintain the high-voltage isolation on the PCB.

LOW-DROOP APPLICATIONS

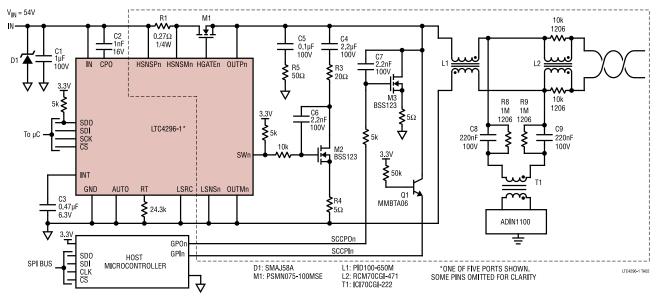
Figure 60 shows a high-current application circuit suitable for applications where the PHY transmitter droop requirement is 10% as opposed to the 25% requirement for IEEE 802.3cg.

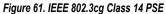




Figure 60. High-Current, Low-Droop Application Circuit

PACKAGE DESCRIPTION

 $\begin{array}{c} \text{UK Package} \\ \text{48-Lead Plastic QFN (7mm <math display="inline">\times$ 7mm)} \end{array}


6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE



APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

TYPICAL APPLICATION

RELATED PARTS

Table 21.

PART NUMBER	DESCRIPTION	COMMENTS
LTC9111	IEEE 802.3cg SPoE PD Controller	IEEE 802.3cg Compliant, Supports SCCP, External Switch, Low-Side Ideal Bridge, Pin Programmable Class Configuration, 2.3V to 60V Input Range
ADIN1100	Robust, Industrial, Low Power 10BASE-T1L PHY	Low Power, Single Port Transceiver; Compliant with IEEE 802.3cg-2019 Ethernet Standard for Long Reach SPE
ADIN1110	Robust, Industrial, Low Power 10BASE-T1L Ethernet MAC-PHY	Ultralow Power, Single Port Transceiver; Compliant with IEEE 802.3cg-2019 Ethernet Standard for Long Reach SPE
ADIN2111	Low Complexity, 2-Port Ethernet Switch with Integrated 10BASE-T1L PHYs	Low Power, Low Complexity, Two-Ethernet Ports Switch and One SPI Port
LTC4359	Ideal Diode Controller with Reverse Input Protection	4V to 80V Operation, -40V Reverse-Input Protection, Low 13µA Shutdown Current
LT8641	65V, 3.5A Synchronous Step-Down Silent Switcher [®] with 2.5μA Quiescent Current	V _{IN(MIN)} = 3V, V _{IN(MAX)} = 65V, V _{OUT(MIN)} = 0.81V, I _Q = 2.5μA, ISD < 1μA, 3mm × 4mm QFN-18
LTC3630A	6V, 500mA Synchronous Step-Down DC/DC Converter	V _{IN} : 4V to 76V, V _{OUT(MIN)} = 0.8V, I _Q = 12µA, ISD = 5µA, 3 × 5 DFN-16, MSOP-16(12)E
LT8301	42V _{IN} Micropower Isolated Flyback Converter with 65V/ 1.2A Switch	Low I _Q Monolithic No-Opto Flyback 5-Lead TSOT-23
ADUM1251	Hot Swappable, Dual I ² C Isolators	Bidirectional I ² C communication, 1000 kHz operation, Suitable for Hot Swap Applications
ADUM162N	Robust 3.0 kV rms Six Channel Digital Isolators w/Fail- Safe and 2 Reverse Channels	Low Propagation Delay, 150 Mbps Maximum Guaranteed Data Rate