Product Document

Published by ams OSRAM Group

Datasheet

DS000667

64-Channel Hyperspectral NIR Sensor

v1-00 • 2022-Aug-25

Content Guide

1	General Description 3
1.1 1.2 1.3	Key Benefits & Features3 Applications4 Block Diagram4
2	Ordering Information5
3	Pin Assignment6
3.1 3.2	Pin Diagram6 Pin Description6
4	Absolute Maximum Ratings 8
5	Electrical Characteristics9
6	Typical Operating Characteristics14
7	Functional Description16
7.1 7.2 7.3 7.4 7.5 7.6	Device Architecture17Sensor Array18SMUX Configuration18ADC Gain Configuration18Typical Measurement Cycle19LED Driver20
8	Device and System Calibration 21

9	I ² C Interface	23
9.1	I ² C Address	23
9.2	I ² C Write Transaction	23
9.3 Q /	Timing Characteristics	24 21
9.5	Timing Diagrams	25
10	Register Description	26
10.1	Register Overview	26
10.2	Detailed Register Description	31
11	Package Drawings & Markings.	45
11.1	Package Drawings	45
12	Tape & Reel Information	48
13	Soldering & Storage Information	n 50
14	Revision Information	51
15	Legal Information	52

1 General Description

AS7421 is a 64-channel near infrared digital spectrometer for spectral identification and spectral footprint analysis used in consumer devices. The spectral response of the sensor is defined in the wavelengths from approximately 750 nm to 1050 nm and the channels are equally distributed over the mentioned range. Once a spectral measurement is started, all 64 channels are processed automatically by 16 parallel sampling ADCs with four consecutive integration cycles.

AS7421 integrates Fabry-Perot filters into standard CMOS silicon via Nano-optic deposited interference filter technology and its package provides a built in aperture and micro optics to control the light entering the sensor array. In addition, the module provides a near infrared (NIR) light source and an integrated LED driver to control it.

Control and Spectral data access is implemented through a serial I²C interface. A GPIO and an interrupt signal are available to start/synchronize the spectral measurement as well as minimize I²C traffic.

1.1 Key Benefits & Features

The benefits and features of AS7421, 64-Channel Hyperspectral NIR Sensor, are listed below:

Figure 1:

Added Value of Using AS7421

Benefits	Features
Miniaturized reflectance/absorbance spectral analysis and material identification in NIR range	61 individual and 4 special purpose spectral channels with a FWHM of typical 10nm 16-bit full scale resolution per spectral channel
Fast measurement time	16 parallel sampling ADCs with individual gain settings 256 ms to obtain measurement data for all 64 channels
High module integration and low BOM	Integrated 64-channel sensor with on chip Fabry-Perot filters Integrated NIR light source (LED) to cover 750- 1050 nm range Integrated programmable LED driver Integrated optics to limit AOI on sensor
Low power consumption and minimum I ² C traffic	3.3 V VDD operation Configurable sleep mode Interrupt-driven device
Synchronization of spectral measurement	Configurable GPIO to trigger/sync spectral measurements

Benefits	Features
Full colibration support pockage sweileble for	Calibration library support which includes data post-processing of spectral raw data
Full calibration support package available for sensor integration	Data output options: raw data, absorbance spectra, 1 st derivative of absorbance spectra, 2 nd derivative of absorbance spectra

1.2 Applications

- Spectral material identification of goods and fabrics
- Moisture measurements in industrial or agricultural environments
- Brix and dry matter measurements of fruits (fruit ripeness)

1.3 Block Diagram

The functional blocks of this device are shown below:

```
Figure 2 :
```

Functional Blocks of AS7421

2 Ordering Information

Ordering Code	Package	Marking	Delivery Form	Delivery Quantity
AS7421-ZLGT	OLGA-10	AS7421	Tape & Reel	2000 pcs/reel

3 Pin Assignment

3.1 Pin Diagram

Figure 3:

Pin Assignment of AS7421 (TOP VIEW)

3.2 Pin Description

Figure 4:

Pin Description of AS7421

Pin Number	Pin Name	Pin Type ⁽¹⁾	Description
2	VDD	Р	Positive supply terminal
4	PGND	Р	Ground. All voltages referenced to GND
3	GND	Р	Ground. All voltages referenced to GND
10	SCL	DI	Serial Interface clock signal line for I ² C interface Connect pull up resistor to 1.8 V or 3.3 V.
9	SDA	D_I/O	Serial Interface data signal line for I ² C interface Connect pull up resistor to 1.8 V or 3.3 V.
1	INT	DO_OD	Interrupt. Open drain output. Connect pull up resistor to 1.8 V or 3.3 V. Active low.
8	GPIO	D_I/O	General purpose input/output.

Pin Number	Pin Name	Pin Type ⁽¹⁾	Description
7	RST	DI	Reset input with internal pull down resistor. Active high
6	LED A	A_I	Supply voltage for NIR LEDs anode.
5	PGND	A_I	Ground. All voltages referenced to GND
11	GND	Р	Exposed pad, connect to GND with thermal vias
12	LED A	A_I	Exposed pad, connect to LED A

(1) Explanation of abbreviations:

DI Digital Input

D_I/O Digital Input/Output

DO_OD Digital Output, open drain

P Power pin A_I Analog input

4 Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under "Electrical Conditions" is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 5

Absolute Maximum Ratings of AS7421

Symbol	Parameter	Min	Max	Unit	Comments
Electrical Par	ameters				
V _{DD} / V _{GND}	Supply Voltage to Ground	-0.3	3.6	V	Applicable for pin VDD
V _{LEDA}	LEDA Voltage to Ground	-0.3	3.6	V	Applicable for pin LEDA
V _{DIG_MAX}	Digital pins	-0.3	VDD+0.3	V	Applicable for pins SCL,SDA and INT
I _{SCR}	Input Current (latch-up immunity)	±	100	mA	JESD78E
Continuous F	Power Dissipation (T _A = 70 °C)				
P _T	Continuous Power Dissipation		1.4	W	Including LEDs and sensor
Electrostatic	Discharge				
ESD _{HBM}	Electrostatic Discharge HBM	±ź	2000	V	JS-001-2017
ESD _{CDM}	Electrostatic Discharge CDM	±	500	V	JS-002-2014
Temperature	Ranges and Storage Conditions				
T _A	Ambient Temperature	-30	+85	°C	
R _{THJA}	Junction to Ambient Thermal Resistance		85	K/W	Depending on actual PCB layout. ⁽²⁾
T _{STRG}	Storage Temperature Range	-40	+85	°C	
T _{BODY}	Package Body Temperature		260	°C	IPC/JEDEC J-STD-020 ⁽¹⁾
R _{HNC}	Relative Humidity (non- condensing)	5	85	%	
MSL	Moisture Sensitivity Level		3		Maximum floor life time of 168h

 The reflow peak soldering temperature (body temperature) is specified according to IPC/JEDEC J-STD-020 "Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices." The lead finish for Pbfree leaded packages is "Matte Tin" (100 % Sn)

(2) Value defined for PCB using 5x5mm copper area on bottom side of PCB. Thermal vias used to connect exposed pad from TOP layer with bottom layer. Contact ams OSRAM for guidelines on thermal management.

5 Electrical Characteristics

All limits are guaranteed. The parameters with Min and Max values are guaranteed with production tests or SQC (Statistical Quality Control) methods. All voltages with respect to GND/PGND. Device parameters are guaranteed at V_{DD} =3.3 V and T_A =25 °C unless otherwise noted.

Figure 6:

Electrical Characteristics of AS7421

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DD}	Supply voltage		3	3.3	3.6	V
V _{LEDA}	LED supply voltage	ILED = 75 mA		2.8	3.0 ⁽¹⁾	V
f _{OSC}	Oscillator frequency			8		MHz
T _A	Operating free-air temperature		-30	25	60	°C
TJ	Operating junction temperature		-30	25	65	°C
T _{OVTEMP}	Overtemperature shutdown			150	165	°C
Power Consum	ption					
		V_{DD} =3.3 V; T _A =25°C Active mode ⁽²⁾		2.5	5	mA
I _{DD}	Supply current	V_{DD} =3.3V; T_A =25 °C Idle mode ⁽³⁾		400		μΑ
		V _{DD} =3.3V; T _A =25 °C Sleep mode ⁽⁴⁾		2	4	μΑ
Digital Pins						
V _{IH}	SCL,SDA input high voltage		1.26			V
V _{IL}	SCL,SDA input low voltage				0.54	V
V _{OL}	INT, SDA output low voltage	6 mA sink current			0.4	V
Cı	Input pin capacitance				10	pF
l _{leak}	Leakage current into SCL,SDA,INT, GPIO pins				1.5	μΑ
LED Driver						
	Absolute ILED accuracy	ILED=50 mA T _A =25°C	-30		+30	%
V _{COMP}	Compliance voltage of current sink	ILED = 75 mA			500	mV
LED						
V _{f_LED1}	Forward voltage	I _F = 25 mA		2.0		V

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{f_LED2}	Forward voltage	I _F = 25 mA		1.6		V
V _{f_LED3}	Forward voltage	$I_F = 25 \text{ mA}$		1.25		V
V_{f_LED4}	Forward voltage	$I_F = 25 \text{ mA}$		1.25		V
λ_{p_LED1}	Peak wavelength	$I_F = 25 \text{ mA}$		760		nm
λ_{p_LED2}	Peak wavelength	I _F = 25 mA		830		Nm
λ_{p_LED3}	Peak wavelength	I _F = 25 mA		950		Nm
λ_{p_LED4}	Peak wavelength	I _F = 25 mA		1040		Nm

(1) VDD must be applied before VLEDA during power on. VLEDA must always be smaller or equal than VDD+0.3V.

(2) Active state occurs during ongoing spectral measurement AEN = "1" and power consumption defined without LED current

(3) Idle state occurs when PON = "1" and all functions are disabled

(4) Sleep state occurs when PON = "0" and no active I^2C communication

Figure 7:

Optical Characteristics of AS7421, Integration Time = 65.5 ms (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
FWHM	Full width half maximum of filter ⁽⁸⁾			10		nm
λ _s	Peak Wavelength Separation			5		nm
dark	Dark ADC count value	Ee = 0 μW/cm² AGAIN: 128x Integration time: 65.5 ms			5	counts
		AGAIN: 1x		1		_
		AGAIN: 2x		2		_
		AGAIN: 4x		4		_
	Optical gain ratios, relative to 1x gain setting	AGAIN: 8x		8		_
Gain ratio		AGAIN: 16x		16		
		AGAIN: 32x		32		
		AGAIN: 64x		64		_
		AGAIN: 128x		128		_
		AGAIN: 256x		256		_
SNR _{SYSTEM}	Signal to noise ratio of optical system ^{(1) (2)}	Range:750 nm – 1050 nm	500			
ImSR	Intra-module spectral repeatability ^{(1) (3)}	Range:750 nm – 1050 nm			0.5	%
IMSR	Inter-module spectral repeatability ^{(1) (4)}	Range:750 nm – 1050 nm			5	%
W _{acc}	Wavelength accuracy (1) (7)				5	nm
t _{int}	Integration time (5)		0.5	65.5	256	ms
t _{64CH}	Measurement time for all 64 channel ⁽⁶⁾			4 x t _{int}		ms
f	Field of view of single photo diode		-10		10	deg

(1) Parameter not tested in final test but guaranteed by design and validation.

(2) Verified with raw spectral data collected with reflectance standard sample (RSS) with reflectance of 99% (white diffusive target). Average and standard deviation is calculated for each channel (λ_{CH}) for 10 measurements. SNR_{SYSTEM} = $\mu(\lambda_{CH}) / \sigma(\lambda_{CH})$

(3) Verified with raw spectral data collected with reflectance standard sample (RSS, 10 measurements per channel) with reflectance of 99% (white diffusive target) and wavelength calibration standard zenith polymer (WCS, 100 measurements per channel).

(4) Verified with raw spectral data collected with reflectance standard sample (RSS, 10 measurements per channel for 10 devices) with reflectance of 99% (white diffusive target) and wavelength calibration standard zenith polymer (WCS, 100 measurements per channel for 10 devices).

(5) 65.5 ms integration time to achieve 16-bit count value (depending on amount of light reflected to sensor)

(6) 4 integration cycles are done automatically to process all 64 channels

(7) Verified after full sensor calibration. Raw spectral data recorded for each channel with wavelength calibration standard zenith polymer (WCS, 10 measurements per channel).

(8) Parameter verified with collimated light at 0° AOI (angle of incidence)

Figure 8:

Typical Irradiance Responsivity of AS7421, Integration Time = 65.5 ms (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{e_PD0}	Irradiance responsivity	AGAIN: 64x ;λ _p : 830 nm		406		counts / (µW/cm²)
R _{e_PD1}	Irradiance responsivity	AGAIN: 64x;λ _p : 750 nm		431		counts / (µW/cm ²)
R _{e_PD2}	Irradiance responsivity	AGAIN: 64x; λ _p : 790 nm		409		counts / (µW/cm ²)
R _{e_PD3}	Irradiance responsivity	AGAIN: 64x;λ _p : 870 nm		296		counts / (µW/cm ²)
R _{e_PD4}	Irradiance responsivity	AGAIN: 64x; λ _p : 940 nm		190		counts / (µW/cm ²)
$R_{e_{PD5}}$	Irradiance responsivity	AGAIN: 64x; λ _p : 980 nm		112		counts / (µW/cm²)
R_{e_PD6}	Irradiance responsivity	AGAIN: 128x ; λ_p : 1020 nm		105		counts / (µW/cm²)
R_{e_PD7}	Irradiance responsivity	AGAIN: 64x; λ _p : 830 nm		385		counts / (µW/cm²)
R _{e_PD8}	Irradiance responsivity	AGAIN: 64x; λ _p : 760 nm		394		counts / (µW/cm ²)
R _{e_PD9}	Irradiance responsivity	AGAIN: 64x; λ _p : 800 nm		422		counts / (µW/cm ²)
R _{e_PD10}	Irradiance responsivity	AGAIN: 64x; λ _p : 840 nm		385		counts / (µW/cm²)
R _{e_PD11}	Irradiance responsivity	AGAIN: 64x; λ _p : 880 nm		344		counts / (µW/cm ²)
R _{e_PD12}	Irradiance responsivity	AGAIN: 64x; λ _p : 930 nm		235		counts / (µW/cm ²)
R _{e_PD13}	Irradiance responsivity	AGAIN: 64x; λ _p : 970 nm		151		counts / (µW/cm ²)
R _{e_PD14}	Irradiance responsivity	AGAIN: 128x ; λ _p : 1010 nm		148		counts / (µW/cm ²)
R _{e_PD15}	Irradiance responsivity	AGAIN: 128x ; λ _p : 1050 nm		61		counts / (µW/cm ²)
R _{e_PD16}	Irradiance responsivity	AGAIN: 64x; λ _p : 770 nm		398		counts / (µW/cm ²)
R _{e_PD17}	Irradiance responsivity	AGAIN: 64x; λ _p : 810 nm		416		counts / (µW/cm²)
R _{e_PD18}	Irradiance responsivity	AGAIN: 64x; λ _p : 850 nm		390		counts / (µW/cm ²)
R _{e_PD19}	Irradiance responsivity	AGAIN: 64x; λ _p : 890 nm		367		counts / (µW/cm ²)
$R_{e_{PD20}}$	Irradiance responsivity	AGAIN: 64x; λ_p : 920 nm		253		counts / (µW/cm²)
R_{e_PD21}	Irradiance responsivity	AGAIN: 64x; λ _p : 960 nm		166		counts / (µW/cm²)
R_{e_PD22}	Irradiance responsivity	AGAIN: 128x ; λ_p : 1000 nm		180		counts / (µW/cm²)
R_{e_PD23}	Irradiance responsivity	AGAIN: 128x ; λ_p : 1040 nm		74		counts / (µW/cm²)
R_{e_PD24}	Irradiance responsivity	AGAIN: 64x; λ _p : 780 nm		398		counts / (µW/cm²)
R_{e_PD25}	Irradiance responsivity	AGAIN: 64x; λ _p : 820 nm		411		counts / (µW/cm²)
R_{e_PD26}	Irradiance responsivity	AGAIN: 64x; λ _p : 860 nm		405		counts / (µW/cm²)
R_{e_PD27}	Irradiance responsivity	AGAIN: 64x; λ_p : 900 nm		363		counts / (µW/cm²)
R_{e_PD28}	Irradiance responsivity	AGAIN: 64x; λ_p : 910 nm		286		counts / (µW/cm²)
$R_{e_{PD29}}$	Irradiance responsivity	AGAIN: 64x; λ _p : 950 nm		189		counts / (µW/cm²)
R _{e_PD30}	Irradiance responsivity	AGAIN: 128x ; λ_p : 990 nm		206		counts / (µW/cm²)
R _{e_PD31}	Irradiance responsivity	AGAIN: 128x ; λ_p : 1030 nm		92		counts / (µW/cm²)
R _{e_PD32}	Irradiance responsivity	AGAIN: 64x; λ_p : 775 nm		401		counts / (µW/cm²)
R _{e_PD33}	Irradiance responsivity	AGAIN: 64x; λ _p : 815 nm		430		counts / (µW/cm ²)
R _{e_PD34}	Irradiance responsivity	AGAIN: 64x; λ _p : 855 nm		401		counts / (µW/cm ²)
R _{e_PD35}	Irradiance responsivity	AGAIN: 64x; λ_p : 895 nm		370		counts / (µW/cm²)
R _{e_PD36}	Irradiance responsivity	AGAIN: 64x; λ_p : 905 nm		304		counts / (µW/cm²)
R _{e_PD37}	Irradiance responsivity	AGAIN: 64x; λ _p : 945 nm		209		counts / (µW/cm ²)

R_{e_PD38}	Irradiance responsivity	AGAIN: 128x ; λ_p : 985 nm	225	counts / (µW/cm ²)
R _{e_PD39}	Irradiance responsivity	AGAIN: 128x; λ _p : 1025 nm	104	counts / (µW/cm ²)
R _{e_PD40}	Irradiance responsivity	AGAIN: 64x; λ_p : 765 nm	397	counts / (µW/cm ²)
R _{e_PD41}	Irradiance responsivity	AGAIN: 64x; λ_p : 805 nm	418	counts / (µW/cm ²)
R _{e_PD42}	Irradiance responsivity	AGAIN: 64x; λ _p : 845 nm	371	counts / (µW/cm ²)
R _{e_PD43}	Irradiance responsivity	AGAIN: 64x; λ_p : 885 nm	354	counts / (µW/cm ²)
R _{e_PD44}	Irradiance responsivity	AGAIN: 64x; λ_p : 915 nm	269	counts / (µW/cm²)
$R_{e_{PD45}}$	Irradiance responsivity	AGAIN: 64x; λ_p : 955 nm	177	counts / (µW/cm²)
R _{e_PD46}	Irradiance responsivity	AGAIN: 128x ; λ_p : 995 nm	203	counts / (µW/cm²)
R _{e_PD47}	Irradiance responsivity	AGAIN: 128x ; λ_p : 1035 nm	90	counts / (µW/cm²)
R _{e_PD48}	Irradiance responsivity	AGAIN: 64x; λ_p : 755 nm	375	counts / (µW/cm²)
R _{e_PD49}	Irradiance responsivity	AGAIN: 64x; λ_p : 795 nm	401	counts / (µW/cm²)
R _{e_PD50}	Irradiance responsivity	AGAIN: 64x; λ_p : 835 nm	387	counts / (µW/cm ²)
R _{e_PD51}	Irradiance responsivity	AGAIN: 64x; λ_p : 875 nm	320	counts / (µW/cm ²)
$R_{e_{PD52}}$	Irradiance responsivity	AGAIN: 64x; λ_p : 926 nm	239	counts / (µW/cm²)
$R_{e_{PD53}}$	Irradiance responsivity	AGAIN: 64x; λ_p : 965 nm	163	counts / (µW/cm²)
$R_{e_{PD54}}$	Irradiance responsivity	AGAIN: 128x ; λ_{p} : 1005 nm	169	counts / (µW/cm²)
$R_{e_{PD55}}$	Irradiance responsivity	AGAIN: 128x ; λ_p : 1045 nm	74	counts / (µW/cm ²)
R _{e_PD56}	Irradiance responsivity	AGAIN: 64x; λ_p : 830 nm	403	counts / (µW/cm²)
$R_{e_{PD57}}$	Irradiance responsivity	AGAIN: 64x; λ_p : 785 nm	413	counts / (µW/cm²)
$R_{e_{PD58}}$	Irradiance responsivity	AGAIN: 64x; λ_p : 825 nm	327	counts / (µW/cm²)
$R_{e_{PD59}}$	Irradiance responsivity	AGAIN: 64x; λ_p : 865 nm	214	counts / (µW/cm²)
R _{e_PD60}	Irradiance responsivity	AGAIN: 64x; λ_p : 935 nm	214	counts / (µW/cm ²)
R _{e_PD61}	Irradiance responsivity	AGAIN: 64x; λ _p : 975 nm	143	counts / (µW/cm ²)
R _{e_PD62}	Irradiance responsivity	AGAIN: 128x ; λ_p : 1015 nm	134	counts / (µW/cm ²)
R _{e_PD63}	Irradiance responsivity	AGAIN: 64x; λ _p : 830 nm	426	counts / (µW/cm ²)

6 Typical Operating Characteristics

Figure 9:

Typical Spectral Responsivity of Sensor

Figure 11:

Typical LED Forward Voltage vs. LED Current

7 Functional Description

Upon power-up (POR), the device initializes. It is required that VDD is applied and settled 10 ms before the supply voltage of the NIR light source is applied (VLED_A). During power down VLED_A needs to be turned off 10 ms prior VDD.

During initialization, the device cannot accept I²C transactions. All communication with the device must be delayed and all outputs from the device must be ignored including interrupts. After initialization, the device enters the SLEEP state. In this operational state, the internal oscillator and other circuitry are not active, resulting in ultra-low power consumption. If an I²C transaction occurs during this state, the I²C core wakes up temporarily to service the communication. Once the Power ON bit, "PON", is enabled, the device enters the IDLE state in which the internal oscillator and attendant circuitry are active, but power consumption remains low. Whenever the spectral measurement is enabled (LTF_ON = "1") the device enters the ACTIVE state. If the spectral measurement is disabled (LTF_ON = "0") the device returns to the IDLE state. The figure below describes a simplified state diagram and the typical supply currents in each state. The power consumption in ACTIVE state does not include the power consumption to drive the NIR LEDs.

Figure 12: Start Up Flow-Chart

7.1 Device Architecture

The device features 64 photo diodes (8x8 array) with on chip Fabry-Perot filters. 61 photodiodes have an individual spectral response in the wavelength range from 750-1050 nm. The four corner photodiodes (indicated in the block diagram below with grey shading) share the same filter response of 830 nm. Sixteen dedicated 16-bit ADCs with adjustable gain and integration time are available and can be configured with the serial interface. The gain of each ADC can be adjusted independently. Once a spectral measurement is started, the device automatically runs four full integration cycles to obtain spectral data of all 64 channels. The spectral data (128 bytes) is stored on chip and can be read out using the I²C interface burst mode after the four cycles have been finished.

The GPIO can be used to trigger and synchronize a spectral measurement with an external MCU or as additional interrupt output. The pin RST acts as reset input and is active high.

Figure 13: Simplified Block Diagram of AS7421

7.2 Sensor Array

The device features an 8x8-photodiode array – each photo diode has its own filter with a dedicated response. The pitch between each photo-diode is $200 \ \mu m$. Four photodiodes (corner) share the same wavelength response.

Figure 14: Photodiode Array

1600μm												
	┶											
		830 nm	750	790	870	940	980	1020	830 nm			
		760	800	840	880	930	970	1010	1050			
		770	810	850	890	920	960	1000	1040			
E		780	820	860	900	910	950	990	1030			
1600		775	815	855	895	905	945	985	1025			
		765	805	845	885	915	955	995	1035			
		755	795	835	875	925	965	1005	1045			
		830 nm	785	825	865	935	975	1015	830 nm			

7.3 SMUX Configuration

The device integrates a multiplexer (SMUX). With the SMUX, it is possible to map all available photo diodes to one of four pre-defined ADCs. In total sixteen ADCs are available for data processing. After power up of the device the SMUX needs to be configured and the configuration data is stored in the RAM. ams OSRAM provides reference codes and an application note on how to configure the SMUX.

7.4 ADC Gain Configuration

The gain of each modulator (ADC) can be adjusted individually. Eight configuration steps are available, from AGAIN "0" (gain factor 1x) to AGAIN "8" which equals a gain ration of 256x. ams OSRAM provides reference codes and an application note on how to configure the AGAIN values of AS7421.

7.5 Typical Measurement Cycle

Figure 15:

Measurement Cycle with LED_WAIT_OFF = "1"

Figure 16:

Measurement Cycle with LED_WAIT_OFF = "0"

Figure 17:

AZ	AutoZero	Offset compensation of ADCs
Cfg	Configuration	Set the ASETUP and SMUX values for the integration cycle
Integration	Integration cycle	Programable with register LTF_ITIME (0x61 – 0x63)
Str	Store	Store the 16 x 16bit ADC data in the internal RAM
Mv	Move	Provision of a new memory area in the internal RAM for the next measurement
WaitC	Wait Cycle	Waiting time between integration cycles within a measurement (can optionally be switched on or off) Programable with registers LTF_WTIME (0x64 – 0x67)
WaitM	Wait Measurement	Waiting time between the provision of a new memory area and the automatic start of the next measurement Programable with registers LTF_WTIME (0x64 – 0x67)

7.6 LED Driver

Four current sinks are provided to drive the 4 integrated NIR LEDs with a programmable constant current of 50 mA or 75 mA per channel. If a measurement is done with 4 x 75 mA ILED the next measurement can be started after a timeout of 10 seconds.

The LED driver can be configured with the register CFG_LED. With the bits "LED_AUTO" in register 0x60 it is possible that the LED driver is configured in such a way that during two consecutive spectral measurements the LEDs are turned on in the first and turned off in the second measurement or vice versa. The example below shows how the device needs to be configured to turn on all LEDs for integration cycle A to D.

Figure 18: LED Configuration Example – All LEDs On During Integration

8 Device and System Calibration

AS7421 is a fully integrated spectrometer, including sensor array, light sources, optics, Fabry-Perot interference filter, cover glass, light guide, all integrated into a single package. Factors such as temperature drift of the LEDs, wavelength shift of the filters but also system related influences such as optical stack-up of the final application influence the measurement results and therefore need to be calibrated to provide accurate and repeatable spectral measurements.

Typically a calibration consist of 2 stages, stage 1 is Device Calibration. ams OSRAM is providing a device calibration file for each individual device which is linked to its unique device ID. This Device Calibration file is needed for final System Calibration and can be used by our provided "Calibration Library".

System Calibration is done to compensate influences which are caused by final system optical stack up implementation, such as cross talk from cover glasses or influences from external diffusers within the optical stack-up. The System Calibration file (stage 2) is generated by use of our Calibration Library.

Figure 19: Calibration Stages

Calibration Stage	Addressed Items	Comment	
	Sensor Array (responsivity)		
Device Calibration	Light Sources (SPD)	Device Calibration file is provided	
(Stage 1 Calibration)	Temperature Drift of PDs	AS7421 device	
	Filter Performance (PWL)	-	
System Calibration (Stage 2 Calibration)	Optical stack of final application such as cover glasses, system optics	In order to generate a system calibration file the Device Calibration file and the calibration library are needed.	

ams OSRAM is providing the following supporting tools to enable system calibration at customer applications.

Figure 20: Supporting Tools (SW and Calibration)⁽¹⁾

Supporting Tools	Function	Version
AS7421 Calibration Library	Provides APIs for system calibration	1.4.0
Calibration Library API Documentation	Documentation of available APIs	1.4.0
AS7421 Chip Library	Provide low level access to AS7421 configuration	4.0.0

Supporting Tools	Function	Version
Chip Library API Documentation	Documentation of Chip Library	4.0.0
AS7421 Calibration Application Note	Provides details to calibration flow	1.4

9 I²C Interface

The device uses I²C serial communication protocol for communication. The device supports 7-bit chip addressing and both standard and full-speed clock frequency modes. Read and Write transactions comply with the standard set by Philips (now NXP). Internal to the device, an 8-bit buffer stores the register address location of the desired byte to read or write. This buffer auto-increments upon each byte transfer and is retained between transaction events (i.e. valid even after the master issues a STOP command and the I²C bus is released). During consecutive Read transactions, the future/repeated I²C Read transaction may omit the memory address byte normally following the chip address byte; the buffer retains the last register address +1. All 16-bit fields have a latching scheme for reading and writing. In general, it is recommended to use I²C bursts whenever possible, especially in this case when accessing two bytes of one logical entity. When reading these fields, the low byte must be read first, and it triggers a 16-bit latch that stores the 16-bit field. The high byte must be read immediately afterwards. When writing to these fields, the low byte must be written first, immediately followed by the high byte. Reading or writing to these registers without following these requirements will cause errors.

9.1 I²C Address

Figure 21: AS7421 I²C Slave Address

Device	I ² C Address
AS7421	0x64

9.2 I²C Write Transaction

A Write transaction consists of a START, CHIP-ADDRESSWRITE, REGISTER-ADDRESS WRITE, DATA BYTE(S), and STOP (P). Following each byte (9TH clock pulse) the slave places an ACKNOWLEDGE/NOT- ACKNOWLEDGE (A/N) on the bus. If the slave transmits N, the master may issue a STOP.

Figure 22: I²C Byte Write

s	DW	A	WA	A	reg_data	A	Ρ
						WA-	++

9.3 I²C Read Transaction

A Read transaction consists of a START, CHIP-ADDRESSWRITE, REGISTER-ADDRESS, RESTART, CHIP-ADDRESSREAD, DATA BYTE(S), and STOP. Following all but the final byte the master places an ACK on the bus (9TH clock pulse). Termination of the Read transaction is indicated by a NACK being placed on the bus by the master, followed by STOP.

Figure 23: I²C Read

9.4 Timing Characteristics

Figure 24:

I²C Timing Characteristics

Symbol	Parameter	Min	Max	Unit
f _{SCL}	I ² C clock frequency		400	kHz
t _{BUF}	Bus free time between start and stop condition	1.3		μs
t _{HS;STA}	Hold time after (repeated) start condition. After this period, the first clock is generated.	0.6		μs
t _{SU;STA}	Repeated start condition setup time	0.6		μs
t _{SU;STO}	Stop condition setup time	0.6		μs
t _{LOW}	SCL clock low period	1.3		μs
t _{HIGH}	SCL clock high period	0.6		μs
t _{HD;DAT}	Data hold time	60		ns
t _{SU;DAT}	Data setup time	100		ns
t _F	Clock/data fall time		300	ns
t _R	Clock/data rise time		300	ns

9.5 Timing Diagrams

Figure 25:

I²C Slave Timing Diagram

10 Register Description

The device is controlled and monitored by registers accessed through the I²C serial interface. These registers provide device control functions and can be read to determine device status and acquire device data.

The register set is summarized below. The values of all registers and fields that are listed as reserved (gray) or are not listed must not be changed at any time. Two-byte fields are always latched with the low byte followed by the high byte. The "Name" column illustrates the purpose of each register by highlighting the function associated to each bit. The bits are shown from MSB (D7) to LSB (D0).

10.1 Register Overview

Figure 26: Register Overview

Addr	Name	<d7></d7>	<d6></d6>	<d5></d5>	<d4></d4>	<d3></d3>	<d2></d2>	<d1></d1>	<d0></d0>
Config	uration Registers								
0x38	CFG_MISC						LED_WAI T_OFF	WAIT_CYCL E_ON	SW_RS T
0x39	CFG_LED_MUL T					L	ED_MULT [4:	0]	
0x3A	reserved				rese	rved			
0x3B	reserved				rese	rved			
0x3C	TEMP_COMPDA C		TEMP_COMPDAC [7:0]						
0x3D	LED_WAIT		LED_WAIT [7:0]						
0x3E	CFG_PINMAP		INT_PINMAP [2:0] INT_IN VERT GPIO_PINMAP [2:0					0]	
RAMC	Configuration								
0x40	CFG_RAM_0								
			32 By	te for prograr	nming the config	guration data	into the interna	al RAM	
0x5F	CFG_RAM_31								
Enable	Register								
0x60	ENABLE	LTF_MO	DE [1:0]	LED_/	AUTO [1:0]	SYNC_ EN	TSD_EN	LTF_EN	PON
Config	uration Registers								
0x61	LTF_ITIME_L				LTF_ITI	ME [7:0]			
0x62	LTF_ITIME_M				LTF_ITIN	/IE [15:8]			
0x63	LTF_ITIME_H				LTF_ITIN	IE [23:16]			
0x64	LTF_WTIME_L		LTF_WTIME [7:0]						
0x65	LTF_WTIME_M				LTF_WTI	ME [15:8]			
0x66	LTF_WTIME_H				LTF_WTI	/IE [23:16]			
0x67	CFG_LTF	TEMP	DIODE_SEL	[2:0]	LTF_CY	CLE [1:0]		CLKMOD [2:0]	

Addr	Name	<d7></d7>	<d6></d6>	<d5></d5>	<d4></d4>	<d3></d3>	<d2></d2>	<d1></d1>	<d0></d0>
0x68	CFG_LED	SET_ LED_O N	LED_OFF_E N	LED_OFF	SET [1:0]		LED)_CURRENT [2	2:0]
0x69	LTF_ICOUNT				LTF_ICOU	NT [7:0]			
0x6A	CFG_RAM	REG_BAN K	N			RA	M_OFFSET [4	4:0]	
0x6B	CFG_GPIO				GPI	IO_INVER T	GPIO_OE N	GPIO_OU T	GPIO_IN
0x6C	INT_ENABLE			EN_DLOST	EN_DSAT	EN_ASA	T EN_TS D	EN_AZ	EN_ADAT A
0x6D	CFG_AZ	AZ_O N	AZ_WTI	ME [1:0]	AZ_EN	AZ_CYC E	L A	Z_ITERATION	\ [2:0]
Statu s									
0x70	STATUS_0					DEV_I	D [5:0]		
0x71	STATUS_1							REV_ID [2:0]
0x72	STATUS_2				LTF_ASA	T [7:0]			
0x73	STATUS_3				LTF_ASA	T [15:8]			
0x76	STATUS_6		TEMP_ASA T	LTF_READ Y	LTF_BUSY				
0x77	STATUS_7	I2C_DA	TA_PTR[1:0]	DLOST	DSAT	ASAT	TSD	AZ	ADATA
Temp									
0x78	TEMP0_L				TEMP0	[7:0]			
0x79	TEMP0_H				TEMP0	[15:8]			
0x7A	TEMP1_L				TEMP1	[7:0]			
0x7B	TEMP1_H				TEMP1	[15:8]			
0x7C	TEMP2_L				TEMP2	[7:0]			
0x7D	TEMP2_H				TEMP2	[15:8]			
0x7E	TEMP3_L				TEMP3	[7:0]			
0x7F	TEMP3_H				TEMP3	[15:8]			
Spectra	al Channel Outpu	ıt Register							
0x80					CH0_DAT	A [7:0]			
0x81	- CHU_DATA				CH0_DAT	A [15:8]			
0x82					CH1_DAT	A [7:0]			
0x83	CHI_DATA				CH1_DAT	A [15:8]			
0x84					CH2_DAT	A [7:0]			
0x85	CH2_DATA				CH2_DAT	A [15:8]			
0x86					CH3_DAT	A [7:0]			
0x87	CIIS_DATA				CH3_DAT	A [15:8]			
0x88					CH4_DAT	A [7:0]			
0x89					CH4_DAT	A [15:8]			
0x8A	CH5 DATA				CH5_DAT	A [7:0]			
0x8B	5110_57177				CH5_DAT	A [15:8]			
0x8C	CH6 DATA				CH6_DAT	A [7:0]			
0x8D	5				CH6_DAT	A [15:8]			
0x8E	CH7_DATA				CH7_DAT	A [7:0]			

Addr	Name	<d7></d7>	<d6></d6>	<d5></d5>	<d4></d4>	<d3></d3>	<d2></d2>	<d1></d1>	<d0></d0>
0x8F					CH7_DA	TA [15:8]			
0x90					CH8_DA	ATA [7:0]			
0x91	- CH8_DATA				CH8_DA	TA [15:8]			
0x92					CH9_DA	ATA [7:0]			
0x93	- CH9_DATA				CH9_DA	TA [15:8]			
0x94					CH10_D	ATA [7:0]			
0x95	- CH10_DATA				CH10_DA	ATA [15:8]			
0x96					CH11_D	ATA [7:0]			
0x97	- CH11_DATA				CH11_DA	ATA [15:8]			
0x98					CH12_D	ATA [7:0]			
0x99	- CH12_DATA				CH12_DA	ATA [15:8]			
0x9A					CH13_D	ATA [7:0]			
0x9B	- CH13_DATA				CH14_DA	ATA [15:8]			
0x9C					CH14_D	ATA [7:0]			
0x9D	- CH14_DATA				CH14_DA	ATA [15:8]			
0x9E					CH15_D	ATA [7:0]			
0x9F	- CH15_DATA				CH15_DA	ATA [15:8]			
0xA0					CH16_DA	ATA [7:0]			
0xA1	- CHI6_DATA				CH16_DA	TA [15:8]			
0xA2					CH17_D/	ATA [7:0]			
0xA3	- CHI7_DATA				CH17_DA	TA [15:8]			
0xA4					CH18_DA	ATA [7:0]			
0xA5	CHI6_DATA				CH18_DA	TA [15:8]			
0xA6					CH19_DA	ATA [7:0]			
0xA7	OHI9_DATA				CH19_DA	TA [15:8]			
0xA8					CH20_DA	ATA [7:0]			
0xA9	OHZO_DATA				CH20_DA	TA [15:8]			
0xAA					CH21_D/	ATA [7:0]			
0xAB					CH21_DA	TA [15:8]			
0xAC					CH22_D/	ATA [7:0]			
0xAD	OHZZ_DATA				CH22_DA	TA [15:8]			
0xAE					CH23_DA	ATA [7:0]			
0xAF	OH20_D/TI/				CH23_DA	TA [15:8]			
0xB0					CH24_D/	ATA [7:0]			
0xB1	OHZ4_DATA				CH24_DA	TA [15:8]			
0xB2	CH25 DATA				CH25_DA	ATA [7:0]			
0xB3	OH20_DATA				CH25_DA	TA [15:8]			
0xB4					CH26_D/	ATA [7:0]			
0xB5					CH26_DA	TA [15:8]			
0xB6	- CH27 DATA				CH27_D/	ATA [7:0]			
0xB7					CH27_DA	TA [15:8]			
0xB8					CH28_D/	ATA [7:0]			
0xB9	UIZO_DATA				CH28_DA	TA [15:8]			

Addr	Name	<d7></d7>	<d6></d6>	<d5></d5>	<d4></d4>	<d3></d3>	<d2></d2>	<d1></d1>	<d0></d0>
0xBA					CH29_D	ATA [7:0]			
0xBB	- CH29_DATA				CH29_DA	ATA [15:8]			
0xBC					CH30_D	ATA [7:0]			
0xBD	- CH30_DATA				CH30_DA	ATA [15:8]			
0xBE	0104 0474				CH31_D	ATA [7:0]			
0xBF	- CH31_DATA				CH31_DA	ATA [15:8]			
0xC0					CH32_D	ATA [7:0]			
0xC1	- CH32_DATA				CH32_DA	ATA [15:8]			
0xC2					CH33_D	ATA [7:0]			
0xC3	- CH33_DATA				CH33_DA	ATA [15:8]			
0xC4					CH34_D	ATA [7:0]			
0xC5	CH34_DATA				CH34_DA	ATA [15:8]			
0xC6					CH35_D	ATA [7:0]			
0xC7	- CH35_DATA				CH35_DA	ATA [15:8]			
0xC8					CH36_D	ATA [7:0]			
0xC9	CH30_DATA				CH36_DA	ATA [15:8]			
0xCA					CH37_D	ATA [7:0]			
0xCB	- CH37_DATA				CH37_DA	ATA [15:8]			
0xCC					CH38_D	ATA [7:0]			
0xCD	- CH36_DATA				CH38_DA	ATA [15:8]			
0xCE					CH39_D	ATA [7:0]			
0xCF	CH39_DATA				CH39_DA	ATA [15:8]			
0xD0					CH40_D	ATA [7:0]			
0xD1	CH40_DATA				CH40_DA	ATA [15:8]			
0xD2					CH41_D	ATA [7:0]			
0xD3					CH41_DA	ATA [15:8]			
0xD4	- CH42 ΠΔΤΔ				CH42_D	ATA [7:0]			
0xD5					CH42_DA	ATA [15:8]			
0xD6					CH43_D	ATA [7:0]			
0xD7	01140_0/11/				CH43_DA	ATA [15:8]			
0xD8					CH44_D	ATA [7:0]			
0xD9					CH44_DA	ATA [15:8]			
0xDA					CH45_D	ATA [7:0]			
0xDB	CH45_DATA				CH45_DA	ATA [15:8]			
0xDC					CH46_D	ATA [7:0]			
0xDD					CH46_DA	ATA [15:8]			
0xDE					CH47_D	ATA [7:0]			
0xDF					CH47_DA	ATA [15:8]			
0xE0					CH48_D	ATA [7:0]			
0xE1					CH48_DA	ATA [15:8]			
0xE2					CH49_D	ATA [7:0]			
0xE3					CH49_DA	ATA [15:8]			
0xE4	CH50_DATA				CH50_D	ATA [7:0]			

Addr	Name	<d7></d7>	<d6></d6>	<d5></d5>	<d4></d4>	<d3></d3>	<d2></d2>	<d1></d1>	<d0></d0>
0xE5					CH50_DA	TA [15:8]			
0xE6					CH51_DA	ATA [7:0]			
0xE7	- CHOI_DATA -				CH51_DA	TA [15:8]			
0xE8					CH52_DA	ATA [7:0]			
0xE9	- CH52_DATA -				CH52_DA	TA [15:8]			
0xEA					CH53_DA	ATA [7:0]			
0xEB	- CH53_DATA -				CH53_DA	TA [15:8]			
0xEC					CH54_DA	ATA [7:0]			
0xED	- CH54_DATA -				CH54_DA	TA [15:8]			
0xEE					CH55_DA	ATA [7:0]			
0xEF	- CH55_DATA -				CH55_DA	TA [15:8]			
0xF0					CH56_DA	ATA [7:0]			
0xF1	- CH56_DATA -				CH56_DA	TA [15:8]			
0xF2					CH57_DA	ATA [7:0]			
0xF3	- CH57_DATA -				CH57_DA	TA [15:8]			
0xF4					CH58_DA	ATA [7:0]			
0xF5	- CH56_DATA -				CH58_DA	TA [15:8]			
0xF6					CH59_DA	ATA [7:0]			
0xF7	- CH59_DATA -				CH59_DA	TA [15:8]			
0xF8					CH60_DA	ATA [7:0]			
0xF9	CHOU_DATA -				CH60_DA	TA [15:8]			
0xFA					CH61_DA	ATA [7:0]			
0xFB	- CH61_DATA -				CH61_DA	TA [15:8]			
0xFC					CH62_DA	ATA [7:0]			
0xFD	- CH62_DATA -				CH62_DA	TA [15:8]			
0xFE					CH63_DA	ATA [7:0]			
0xFF	- CH63_DATA				CH63_DA	TA [15:8]			

10.2 Detailed Register Description

Explanation of abbreviation:

- RW = read or write
- RO = read only
- W = write only
- SC = self-clearing after access

10.2.1 ENABLE Register (Address 0x60)

Figure 27: ENABLE Register

Addr: 0x60		ENABLE		
Bit	Bit Name	Default	Access	Bit Description
7:6	LTF_MODE	00	RW	LTF mode 00: Normal operation 01: Reserved 10: Reserved 11: Reserved
5:4	LED_AUTO	00	RW	Controls NIR light source during spectral measurement 00: LEDs OFF 01: First measurement OFF / second measurement ON 10: First measurement ON / second measurement OFF 11: LEDs ON
3	SYNC_EN	0	RW	 Synchronization enable O: Spectral measurement started with bit LTF_EN 1: Spectral measurement synchronized with signal applied to pin GPIO. GPIO needs to be configured as input in register CFG_GPIO.
2	TSD_EN	0	RW	Automatic power down by temperature measurement 0: OFF 1: ON
1	LTF_EN	0	RW	LTF enable 0: Spectral measurement disabled 1: Spectral measurement enabled
0	PON	0	RW	Power ON 0: Internal oscillator disabled – device enter 1: Internal oscillator enabled – device enter idle state

10.2.2 LTF_ITIME Register (Address 0x61, 0x62, 0x63)

Register 0x61, 0x62 and 0x63 program the integration time of the LTF converter. The integration time is set as follows:

$$t_{int} = (LTF_ITIME + 1) \times \frac{1}{f_CLKMOD}$$

Figure 28: LTF_ITIME_L Register

Addr: 0	x61	LTF_ITIME	L	
Bit	Bit Name	Default	Access	Bit Description
7:0	LTF_ITIME	0	RW	Integration time Low byte of integration time. Do not change during LTF_EN = "1"

Figure 29:

LTF_ITIME_M Register

Addr: 0	x62	LTF_ITIME	_ M	
Bit	Bit Name	Default	Access	Bit Description
15:8	LTF_ITIME	0	RW	Integration time Middle byte of integration time. Do not change during LTF_EN = "1"

Figure 30:

LTF_ITIME_H Register

Addr: 0	x63	LTF_ITIME	_н	
Bit	Bit Name	Default	Access	Bit Description
23:16	LTF_ITIME	0	RW	Integration time High byte of integration time. Do not change during LTF_EN = "1"

10.2.3 LTF_WTIME Register (Address 0x64, 0x65, 0x66)

LTF_WTIME register (0x64, 0x65 and 0x66) programs the wait time (WTIME) between two consecutive spectral measurements. The wait time is set as follows:

$$t_{wait} = (LTF_WTIME + 1) \times \frac{1}{f_CLKMOD}$$

Figure 31: LTF_WTIME_L Register

Addr: 0	x64	LTF_WTI	ME_L	
Bit	Bit Name	Default	Access	Bit Description
7:0	LTF_WTIME	0	RW	Wait time Low byte of wait time. Do not change during LTF_EN = "1"

Figure 32:

LTF_WTIME_M Register

Addr: 0	x65	LTF_WTI	ME_M	
Bit	Bit Name	Default	Access	Bit Description
15:8	LTF_WTIME	0	RW	Wait time Middle byte of wait time. Do not change during LTF_EN = "1"

Figure 33:

LTF_WTIME_H Register

Addr: 0	x66	LTF_WTI	ME_H	
Bit	Bit Name	Default	Access	Bit Description
23:16	LTF_WTIME	0	RW	Wait time High byte of wait time. Do not change during LTF_EN = "1"

10.2.4 CFG_LTF Register (Address 0x67)

Figure 34: CFG_LTF Register

Addr: 0x67		CFG_LTF		
Bit	Bit Name	Default	Access	Bit Description
7:5	TEMP_DIODE_SEL	000	RW	Select temperature diode
4:3	LTF_CYCLE	00	RW	Number of integration cycles during a spectral measurement00: One integration cycle, A (16 channels)01: Two integration cycles, A+B (32 channels)10: Three integration cycles, A+B+C (48 channels)11: Four integration cycles, A+B+C+D (64 channels)Note: To get spectral data of all 64 channelsLTF_CYCLE needs to be set to "11". Do not change this setting during LTF_EN = "1"
2:0	CLKMOD	100	RW	Frequency of integration clock 010: Reserved 100: 1 MHz 101: Reserved 110: Reserved Note: Do not change

10.2.5 CFG_LED Register (Address 0x68)

Figure 35: CFG_LED Register

Addr: 0>	<68	CFG_LED		
Bit	Bit Name	Default	Access	Bit Description
7	SET_LED_ON	0	RW	LED enable 0: LED disabled 1: Enable LED permanently Note: can only be enabled if PON = "1". Bit is automatically cleared with PON = "0".
6	LED_OFF_EN	0	RW	LED off during modulation 0: Normal mode 1: LED is turned off during modulation if LTF_MODE is set to "10" (one integration before modulation)
5:4	LED_OFFSET	00	RW	Offset address for programming the values for LED_MULT. Access succeeded via the address CFG_LED_MULT_ 00: LED_MULT_0 for integration cycle A 01: LED_MULT_1 for integration cycle B 10: LED_MULT_2 for integration cycle C 11: LED_MULT_3 for integration cycle D
2:0	LED_CURRENT	000	RW	LED current configuration per LED driver 000: 50 mA 001: 75 mA Others: Reserved

10.2.6 LTF_ICOUNT Register (Address 0x69)

Figure 36:

LTF_ICOUNT Register

Addr: 0x69		LTF_ICOUNT		
Bit	Bit Name	Default	Access	Bit Description
7:0	LTF_ICOUNT	0	RW	Number of spectral measurements 0x00: No measurement 0xFF: 255 measurements in continuous mode Others: Number of measurements. After every measurement, LTF_ON is set to "0" internally.

10.2.7 CFG_MISC Register (Address 0x38)

Figure 37: CFG_MISC Register

Addr: 0x38		CFG_MISC		
Bit	Bit Name	Default	Access	Bit Description
2	LED_WAIT_OFF	0	RW	LED waiting time 1: Disable the LED waiting time between integration cycle A to D
1	WAIT_CYCLE_ON	0	RW	LTF waiting time 1: Enable the waiting time between integration cycle A to D (programmable with LTF_WTIME)
0	SW_RST	0	SC	Software reset 1: Reset to default status as after power on reset or reset via pin RST.

10.2.8 CFG_LED_MULT Register (Address 0x39)

Figure 38: CFG_LED_MULT Register

Addr: 0x39		CFG_LED_MULT			
Bit	Bit Name	Default	Access	Bit Description	
				Defines which LED is turned on per integration cycle A to D.	
4:0	LED_MULT	0	RW	Ox1F: All LEDS on per Integration cycle Other: Reserved	
				Note: LED_OFFSET needs to be set first, after that LED_MULT needs to be written.	

10.2.9 LED_WAIT Register (Address 0x3D)

Figure 39: LED_WAIT Register

Addr: 0x3D		LED_WAIT			
Bit	Bit Name	Default	Access	Bit Description	
7:0	LED_WAIT	0	RW	Wait time between switching on the LED and begin of integration/modulation. $t = (LED WAIT) \times 1024$ us	
				$t_{LED_wait} = (LED_WAII) \times 1024 \mu s$	

10.2.10 CFG_PINMAP Register (Address 0x3E)

Figure 40: CFG_PINMAP Register

Addr: 0x3E		CFG_PINMAP			
Bit	Bit Name	Default	Access	Bit Description	
6:4	INT_PINMAP	0	RW	Select signal to output pin INTX. 0: INTX 1: LTF_READY 2: LTF_BUSY 3: LED_ON Others: Reserved	
3	INT_INVERT	0	RW	Invert output pin INTX	
2:0	GPIO_PINMAP	0	RW	Select signal to output pin GPIO. 0: GPIO 1: LTF_READY 2: LTF_BUSY 3: LED_ON Others: Reserved	

10.2.11 CFG_RAM Register (Address 0x6A)

Figure 41:

CFG_RAM Register

Addr: 0x6A		CFG_RAM		
Bit	Bit Name	Default	Access	Bit Description
7	REG_BANK	0	RW	Select P2RAM
				Offset address for programming the configuration into the RAM. Access succeeded via the addresses CFG_RAM_0 to CFG_RAM_31.
				Ss Bit Description Select P2RAM Offset address for programming the configuration into the RAM. Access succeeded via the addresses CFG_RAM_0 to CFG_RAM_31. 0x0C: SMUX for integration cycle A 0x0D: SMUX for integration cycle B 0x0E: SMUX for integration cycle C 0x0F: SMUX for integration cycle D 0x10: ASETUP for integration cycle A/B 0x11: ASETUP for integration cycle C/D 0x12: COMPDAC for modulators and integrators Others: Reserved
4:0	RAM OFFSET	0	RW	0x0E: SMUX for integration cycle C
				0x0F: SMUX for integration cycle D
				0x10: ASETUP for integration cycle A/B
				0x11: ASETUP for integration cycle C/D
				0x12: COMPDAC for modulators and integrators
				Others: Reserved

10.2.12 CFG_GPIO Register (Address 0x6B)

Figure 42:

CFG_GPIO Register

Addr: 0x6B		CFG_GPIO			
Bit	Bit Name	Default	Access	Bit Description	
				GPIO invert	
3	GPIO_INVERT	0	RW	0: Input/output not inverted	
				1: Input/output inverted	
				GPIO output enable	
2	GPIO_OEN	0	RW	0: GPIO output disabled	
				1: GPIO output enabled	
1	GPIO_OUT	0	RW	GPIO output	
0	GPIO_IN	0	RO	GPIO input	

10.2.13 INT_EN Register (Address 0x6C)

Figure 43: INT_EN Register

Addr: 0x6C		INT_EN		
Bit	Bit Name	Default	Access	Bit Description
5	EN_DLOST	0	RW	1: Enable data lost interrupt
4	EN_DSAT	0	RW	1: Enable digital saturation interrupt
3	EN_ASAT	0	RW	1: Enable analog saturation interrupt
2	EN_TSD	0	RW	1: Enable temperature shutdown interrupt
1	EN_AZ	0	RW	1: Enable auto zero interrupt
0	EN_ADATA	0	RW	1: Enable ADATA interrupt

10.2.14 CFG_AZ Register (Address 0x6D)

Figure 44: CFG_AZ Register

Addr: 0x6D		CFG_AZ			
Bit	Bit Name	Default	Access	Bit Description	
7	AZ_ON	0	RW	Start single autozero for all modulators and integrators if pon=1	
	AZ_WTIME	00		Wait time for autozero	
			RW	00: Wait time = 32 μs	
6.5				01: Wait time = 64 μ s	
0.0				10: Wait time = 128 μs	
				11: Wait time = 256 μs	
				Do not change during LTF_EN = "1"	
4	AZ_EN	0	RW	1: Enable autozero during measurements. First autozero starts before the first measurement.	
3	AZ_CYCLE	0	RW	1: Autozero is done before each integration cycle	
2:0	AZ_ITERATION	00	RW	Autozero is done every 2 x "AZ_ITERATION"	

10.2.15 STATUS_0 Register (Address 0x70)

Figure 45: STATUS_0 Register

Addr: 0	x70	STATUS_0		
Bit	Bit Name	Default	Access	Bit Description
5:0	DEV_ID	0B	RO	Device ID

10.2.16 STATUS_1 Register (Address 0x71)

Figure 46: STATUS_1 Register

Addr: 0x71		STATUS_1		
Bit	Bit Name	Default	Access	Bit Description
2:0	REV_ID	01	RO	Revision ID

10.2.17 STATUS_2 Register (Address 0x72)

Figure 47: STATUS_2 Register

Addr: 0x72		STATUS_2		
Bit	Bit Name	Default	Access	Bit Description
7:0	LTF_ASAT [7:0]	0	RO	Analog saturation If set to "1", analog saturation of modulators 0 to 7

10.2.18 STATUS_3 Register (Address 0x73)

Figure 48: STATUS_3 Register

Addr: 0x73		STATUS_3		
Bit	Bit Name	Default	Access	Bit Description
7:0	LTF_ASAT [15:8]	0	RO	Analog saturation If set to "1", analog saturation of modulators 8 to 15

10.2.19 STATUS_6 Register (Address 0x76)

Figure 49:

STATUS_6 Register

Addr: 0x76		STATUS_6			
Bit	Bit Name	Default	Access	Bit Description	
6	TEMP_ASAT	0	RO	Analog saturation of temperature	
5	LTF_READY	0	RO	Measurement is finished. New measurement can be started.	
4	LTF_BUSY	0	RO	Measurement is active. New measurement cannot be started.	

10.2.20 STATUS_7 Register (Address 0x77)

The register STATUS_7 contains the information to the interrupt status. The interrupt status is automatically reset after reading the corresponding bit.

Before reading the data of the last measurement register STATUS_7 has to be read first.

Figure 50: STATUS_7 Register

Addr: 0x77		STATUS_7		
Bit	Bit Name	Default	Access	Bit Description
7:6	I2C_DATA_PTR	10	RO	Information to read data pointer for the temperature and spectral measurement data
5	DLOST	0	RO	Measurement data has been lost. Time for reading is larger than the time of a measurement
4	DSAT	0	RO	Digital saturation occurred during the measurement
3	ASAT	0	RO	Analog saturation occurred during the measurement

Addr: 0x77		STATUS_7		
Bit	Bit Name	Default	Access	Bit Description
2	TSD	0	RO	Detecting a temperature shutdown
1	AZ	0	RO	End of autozero
0	ADATA	0	RO	End of measurement. New measurement data can be read.

10.2.21 TEMP Register (Address 0x78 – 0x7F)

The temperature channel data is stored as 16-bit of data spread across two registers.

Before reading the temperature data of the last measurement, register STATUS 7 has to be read first.

Figure 51: TEMP0_L Register

Addr: 0x78		TEMP0_L		
Bit	Bit Name	Default	Access	Bit Description
7:0	TEMP0	0	RO	Low byte of temperature integration cycle A

Figure 52:

TEMP0_H Register

Addr: 0x79		ТЕМР0_Н		
Bit	Bit Name	Default	Access	Bit Description
15:8	TEMP0	0	RO	High byte of temperature integration cycle A

Figure 53:

TEMP1_L Register

Addr: 0x7A		TEMP1_L		
Bit	Bit Name	Default	Access	Bit Description
7:0	TEMP1	0	RO	Low byte of temperature integration cycle B

Figure 54:

TEMP1_H Register

Addr: 0x7B		TEMP1_H		
Bit	Bit Name	Default	Access	Bit Description
15:8	TEMP1	0	RO	High byte of temperature integration cycle B

Figure 55:

TEMP2_L Register

Addr: 0	x7C	TEMP2_L		
Bit	Bit Name	Default	Access	Bit Description
7:0	TEMP2	0	RO	Low byte of temperature integration cycle C

Figure 56:

TEMP2_H Register

Addr: 0x7D		TEMP2_H		
Bit	Bit Name	Default	Access	Bit Description
15:8	TEMP2	0	RO	High byte of temperature integration cycle C

Figure 57:

TEMP3_L Register

Addr: 0x7E		TEMP3_L		
Bit	Bit Name	Default	Access	Bit Description
7:0	TEMP3	0	RO	Low byte of temperature integration cycle D

Figure 58:

TEMP3_H Register

Addr: 0	: 0x7F TEMP3_H			
Bit	Bit Name	Default	Access	Bit Description
15:8	TEMP3	0	RO	High byte of temperature integration cycle D

10.2.22 CHx_DATA Register (Address 0x80 – 0xFF)

In the registers CH0_DATA to CH63_DATA (0x80 to 0xFF) the spectral measurement results are stored. The full scale value of each channel is 16-bit – the low byte is stored in registers CHx_DATA_L and the high byte is stored in CHx_DATA_H.

Before reading the data of the last spectral measurement register STATUS_7 (0x77) has to be read first.

Figure 59: CHx_DATA Register

Addr: 0x80 to 0xFF		CHx_DATA_L/CHx_DATA_H		
Bit	Bit Name	Default	Access	Bit Description
15:8	CHx_DATA	0	RO	High byte of channel x spectral data
7:0	CHx_DATA	0	RO	Low byte of channel x spectral data

11 Package Drawings & Markings

11.1 Package Drawings

Figure 60:

AS7421 OLGA10 Package Outline Drawing – TOP and SIDE View

- (1) All dimensions are in millimeters. Angles in degrees.
- (2) Dimensioning and tolerancing conform to ASME Y14.5M-1994.
- (3) This package contains no lead (Pb).
- (4) This drawing is subject to change without notice.

- (1) All dimensions are in millimeters. Angles in degrees.
- (2) Dimensioning and tolerancing conform to ASME Y14.5M-1994.
- (3) This package contains no lead (Pb).
- (4) This drawing is subject to change without notice.

Figure 62: AS7421 OLGA 10 Package Marking/Code

@ Sublot Identifierxxxxx 5-Digit Tracecode

12 Tape & Reel Information

Figure 63:

AS7421 OLGA10 Tape Dimensions⁽¹⁾

(1) All dimensions are in millimeters

Figure 64: AS7421 OLGA10 Reel Dimensions ⁽¹⁾

(1) All dimensions are in millimeters

13 Soldering & Storage Information

Figure 65:

Solder Reflow Profile Graph

Figure 66: Solder Reflow Profile

Parameter	Reference	Device
Average temperature gradient in preheating		2.5 °C/s
Soak time	t _{soak}	2 to 3 minutes
Time above 217 °C (T1)	t ₁	Max 60 s
Time above 230 °C (T2)	t ₂	Max 50 s
Time above T _{peak} - 10 °C (T3)	t ₃	Max 10 s
Peak temperature in reflow	T _{peak}	260 °C
Temperature gradient in cooling		Max −5 °C/s

14 **Revision Information**

Document Status	Product Status	Definition
Product Preview	Pre-Development	Information in this datasheet is based on product ideas in the planning phase of development. All specifications are design goals without any warranty and are subject to change without notice
Preliminary Datasheet	Pre-Production	Information in this datasheet is based on products in the design, validation or qualification phase of development. The performance and parameters shown in this document are preliminary without any warranty and are subject to change without notice
Datasheet	Production	Information in this datasheet is based on products in ramp-up to full production or full production which conform to specifications in accordance with the terms of ams-OSRAM AG standard warranty as given in the General Terms of Trade
Datasheet (discontinued)	Discontinued	Information in this datasheet is based on products which conform to specifications in accordance with the terms of ams-OSRAM AG standard warranty as given in the General Terms of Trade, but these products have been superseded and should not be used for new designs

Changes from previous version to current revision v1-00	Page
Initial production version	
Document security class is updated to "Public" in the footer	
Removed 730 nm LED from all chapters All	

• Page and figure numbers for the previous version may differ from page and figure numbers in the current revision.

• Correction of typographical errors is not explicitly mentioned.

15 Legal Information

Copyrights & Disclaimer

Copyright ams-OSRAM AG, Tobelbader Strasse 30, 8141 Premstaetten, Austria-Europe. Trademarks Registered. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

Devices sold by ams-OSRAM AG are covered by the warranty and patent indemnification provisions appearing in its General Terms of Trade. ams-OSRAM AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein. ams-OSRAM AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with ams-OSRAM AG for current information. This product is intended for use in commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by ams-OSRAM AG for each application. This product is provided by ams-OSRAM AG "AS IS" and any express or implied warranties, including, but not limited to the implied warranties of merchantability and fitness for a particular purpose are disclaimed.

ams-OSRAM AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of ams-OSRAM AG rendering of technical or other services.

RoHS Compliant & ams Green Statement

RoHS Compliant: The term RoHS compliant means that ams-OSRAM AG products fully comply with current RoHS directives. Our semiconductor products do not contain any chemicals for all 6 substance categories plus additional 4 substance categories (per amendment EU 2015/863), including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, RoHS compliant products are suitable for use in specified lead-free processes.

ams Green (RoHS compliant and no Sb/Br/Cl): ams Green defines that in addition to RoHS compliance, our products are free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) and do not contain Chlorine (Cl not exceed 0.1% by weight in homogeneous material).

Important Information: The information provided in this statement represents ams-OSRAM AG knowledge and belief as of the date that it is provided. ams-OSRAM AG bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. ams-OSRAM AG has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. ams-OSRAM AG and ams-OSRAM AG suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

Headquarters	Please visit our website at www.ams.com
ams-OSRAM AG	Buy our products or get free samples online at www.ams.com/Products
Tobelbader Strasse 30	Technical Support is available at www.ams.com/Technical-Support
8141 Premstaetten	Provide feedback about this document at www.ams.com/Document-Feedback
Austria, Europe	For sales offices, distributors and representatives go to www.ams.com/Contact
Tel: +43 (0) 3136 500 0	For further information and requests, e-mail us at ams_sales@ams.com