

www.cypress.com Document Number: 002-25270 Rev. *B 1

AN225270

CYW208xx BLE Low-Power Guidelines

Author: Abhishek Khinvesra

Associated Part Family: CYW20819, CYW20820, CYW89820

Associated Code Examples: CE225540
 Related Application Notes: AN225684

AN225270 describes how to use CYW208xx power modes to optimize power consumption. The CYW208xx

Bluetooth (BT) system-on-chip (SoC) is a BT 5.0-compliant, Arm® Cortex®-M4 CPU-based ultra-low-power SoC that

supports both Classic BT and Bluetooth Low Energy (BLE). Major topics include the low-power modes in these

devices, and power management techniques using those modes. It will provide tips and tricks to minimize the current

consumption to increase battery life.

Contents

1 Introduction .. 1
2 Cypress Resources ... 1

2.1 ModusToolbox .. 1
2.2 Development Kits .. 2

3 CYW208xx Power Management Device Resources 2
3.1 System Power Modes ... 2
3.2 Device Power Domains 4
3.3 Power Management Unit (PMU) 4

3.4 Implementing Low Power in ModusToolbox 5
3.5 Recommendations for Low Power 9

4 Low Power Code Example .. 10
4.1 CE225540 – CYW208xx Switching

Between Power Modes 10
5 Summary ... 10
6 Related Documents ... 11
Worldwide Sales and Design Support 13

1 Introduction
Bluetooth Low Energy (BLE) devices such as heart-rate monitors are typically battery-operated. A long battery life is a
key requirement for such devices. CYW208xx gives the flexibility of high performance and low power consumption
using various low-power modes. This application note shows how to implement a low-power solution using the
CYW208xx device.

CYW208xx is a Bluetooth (BT) 5.0-compliant SoC with an integrated 2.4-GHz transceiver with support for both BLE
and Classic Bluetooth. The device is intended for use in audio, IoT, sensors (medical, home, security), and HID markets.
CYW208xx features high levels of integration to reduce external components, thereby minimizing system footprint and
costs.

This application note requires a basic understanding of the CYW208xx device architecture and ability to develop an
application using ModusToolbox™. If you are new to CYW208xx, see the AN225684 - Getting Started with CYW208xx
application note. If you are new to ModusToolbox, see the ModusToolbox IDE User Guide.

2 Cypress Resources
Cypress provides a wealth of data at http://www.cypress.com/internet-things-iot to help you to select the right IoT device
for your design, and quickly and effectively integrate the device into your design. Cypress provides customer access to
a wide range of information, including technical documentation, schematic diagrams, product bill of materials, PCB
layout information, and software updates. Customers can acquire technical documentation and software from the
Cypress Support Community website (http://community.cypress.com/).

2.1 ModusToolbox

Cypress provides ModusToolbox as the software development platform for CYW208xx applications. ModusToolbox
software is a set of tools that enable you to integrate Cypress devices into your existing development methodology.
One of the tools is a multi-platform, Eclipse-based Integrated Development Environment (IDE) called the ModusToolbox
IDE that supports application configuration and development.

http://www.cypress.com/
https://www.cypress.com/datasheet/CYW20819
https://github.com/cypresssemiconductorco/Code-Examples-BT-SDK-for-ModusToolbox/tree/master/CYW920819EVB-02/apps/demo/low_power_20819
http://www.cypress.com/an225684
http://www.cypress.com/an225684
http://www.cypress.com/modustoolbox
http://www.cypress.com/internet-things-iot
http://community.cypress.com/

 CYW208xx BLE Low-Power Guidelines

www.cypress.com Document Number: 002-25270 Rev. *B 2

2.2 Development Kits

CYW920819EVB-02 is the development kit that supports prototyping and application development using the
CYW20819 device. More information on the kit including the User Guide and schematics can be found on the
CYW920819EVB-02 web page. Similar kits can be found for the CYW20820 (CYW920820EVB-02) and CYW89820
(CYW989820EVB-01) devices.

Figure 1. CYW920819EVB-02 Evaluation Kit

3 CYW208xx Power Management Device Resources
This section describes the supported power modes. It also describes the various hardware and software resources
available in the CYW208xx device to implement low-power applications.

3.1 System Power Modes

The CYW208xx devices support various system power modes as shown in Figure 2:

Figure 2. CYW208xx Power Modes

Active

Idle

Sleep

PDS

ePDS

Timed Wake

HID-

OFF

http://www.cypress.com/
http://www.cypress.com/CYW920819EVB-02
http://www.cypress.com/CYW920819EVB-02
https://www.cypress.com/documentation/development-kitsboards/cyw920820evb-02-evaluation-kit

 CYW208xx BLE Low-Power Guidelines

www.cypress.com Document Number: 002-25270 Rev. *B 3

Active: Active mode is the normal operating mode in which all peripherals are available and the CPU is active.

Idle: In this mode, the CPU is in the Wait for Interrupt (WFI) state and the HCLK, which is the high-frequency clock
derived from the main crystal oscillator, is running at a lower clock speed (4 MHz if DMA is not active; 8 MHz if DMA is
active). Other clocks are active and the state of the entire chip is retained. Idle mode is chosen when other lower-power
modes are not possible. Wake from this mode is almost instantaneous as the device must service only the new interrupt.
Any configured interrupt will wake the device.

Sleep: In this mode, the CPU is in the WFI state and the HCLK is not running. The Power Management Unit (PMU)
determines whether other clocks can be turned OFF, and does so accordingly. If there is no activity or there is only
BLE activity like a connection or advertisement, the 24-MHz external crystal is turned OFF; if there is a BR/EDR master
activity, the 24-MHz crystal is kept ON. The state of the entire chip is retained including SRAM; internal LDO regulators
run at a lower voltage (voltage is managed by the PMU). Peripherals like SPI, I2C, and UART are powered ON. Wake
can be through various sources such as a GPIO interrupt, timer, or BT activity.

Before entering sleep, the PMU takes a snapshot of all the enabled interrupts and then disables them so that only the
wake ISR is allowed. Upon wakeup, the wake ISR is executed first, all the system clocks are restored; the wake ISR is
then cleared. After returning from the wake ISR, all other interrupts are enabled, and any pending interrupts are
serviced. If the device goes to sleep with the 24-MHz crystal OFF, the wakeup time is ~2 ms; if the device goes to sleep
with the crystal ON, the wakeup time is ~500 µs.

PDS: This mode is the same as the sleep mode with most of the peripherals such as UART and SPI turned OFF. The
entire SRAM is retained.

ePDS: In this mode, the entire device is OFF except for the RTC, LPO, and Lean High Land (LHL) GPIO interrupt to
wake the device. The entire SRAM memory is retained. The device enters this state through WFI but exits through a
reset vector. It can wake up using an LHL GPIO interrupt, a timer (RTC), or BT activity.

Before entering this mode, the PMU stores the CPU state and some register values (including the program counter) in
SRAM. Upon wakeup, the device will go to the reset vector and will determine if the wakeup was from ePDS or power
on reset. If the wakeup is from ePDS, it will restore the register values and CPU. As a result, it will start executing from
the instruction after the WFI instruction.

The PMU enters ePDS only if the minimum time to sleep is ~10 ms or larger. Therefore, if BT activity such as a
connection event is scheduled within the next 10 ms, the device will not enter ePDS. Wakeup time is ~2 ms.

Timed-Wake: Lean High Land IOs (LHL, lowest power domain. See Table 3), RTC, and LPO are the only active blocks
in Timed-Wake and SRAM is not retained. RTC that runs off the LPO is used to wake the device up after a
predetermined time. The device starts executing from reset; therefore, the wakeup time is the same as that of power
on reset.

HID-OFF: This mode is the same as the Timed-Wake mode except that the RTC cannot wake up the device. Everything
is OFF in this mode and the SRAM is not retained. The only wakeup source is an LHL GPIO interrupt. The device starts
executing from reset after wakeup; therefore, the wakeup time is the same as that of power-on reset.

Table 1 summarizes low-power modes in CYW208xx and their properties:

Table 1. Low-Power Modes Summary

Property / Mode Active Idle Sleep/PDS ePDS HID-OFF/Timed Wake

Clocks All clocks active
HCLK at 4/8 MHz.
Other clocks active

HCLK off, Other
clocks depend on
PMU

Only LPO active Only LPO active

SRAM retained? NA Yes Yes Yes No

Wake sources NA
Any configured
interrupt

GPIO, timer, BT
activity

LHL GPIO, timer, BT
activity

LHL GPIO, timer

BT activities
Everything
allowed

Everything allowed Everything allowed
Everything allowed.
Minimum sleep time
should be ~10 ms

Nothing allowed

Table 2 shows the state of the peripherals in various power states where WFI means “Wake From Interrupt” and
Retained means the SRAM contents are retained.

http://www.cypress.com/

 CYW208xx BLE Low-Power Guidelines

www.cypress.com Document Number: 002-25270 Rev. *B 4

Table 2. Peripherals in Low-Power Modes

Peripheral
/ Mode

Active Idle Sleep PDS ePDS
HID-

OFF/Timed
Wake

CPU On WFI WFI WFI WFI WFI

SPI On On On Off Off Off

I2C On On On Off Off Off

HCI UART On On On Off Off Off

PUART On On On Off Off Off

ADC On On On Off Off Off

PWM On On On Off Off Off

TRNG On On On Off Off Off

Keyscan On On On On On Off

Timer On On On On On Off

GPIO On On On On On On

SRAM On On On Retained Retained Off

WDT On On On On Off Off

RTC On On On On On On

LPO On On On On On On

3.2 Device Power Domains

The power domains on the chip (and the peripherals they supply) are managed by the PMU as listed in Table 3:

Table 3. Device Power Domains

Power Domain Peripherals Operational Power Modes

VDDC SRAM, Patch RAM The VDDC power domain is used to supply power to
SRAMs in ePDS mode so that the contents are retained.

VDDCP PWM PWM is switched OFF in ePDS mode but can work in higher
power modes.

VDDCG SWD, I2C, SPI, PUART, HCI UART, WDT,
Dual Input 32-bit Timer, flash, ROM

These hardware blocks can operate until the PMU enters
ePDS.

VBAT/LHL GPIO, Analog PMU, RTC, LPO These hardware blocks can operate until the PMU enters
HID-Off.

VBAT/LHL Aux ADC The Aux ADC can operate until the PMU enters ePDS.

3.3 Power Management Unit (PMU)

This section details the hardware and software resources used to implement low-power modes. The PMU is a software
implementation with the necessary hardware support to lower the average power consumption of the device. The PMU
module is executed from the context of the lowest-priority thread, which is the Idle thread. Whenever the PMU gets
CPU time, it tries to put the device in one of the low-power modes available in the device. The primary tasks of the
PMU include the following:

▪ Implementing low-power modes, transitions, and timing

▪ Communicating with different blocks and modules to register callbacks for pre-sleep and post-sleep states

▪ Implementing the wake ISR, which wakes up the device at the required time

▪ Detecting, switching, and calibrating of low-power oscillators (LPO)

http://www.cypress.com/

 CYW208xx BLE Low-Power Guidelines

www.cypress.com Document Number: 002-25270 Rev. *B 5

3.3.1 Low-Power Osci l lator (Hardware)

The LPO is a clock that runs in low-power modes to source some blocks. This clock is used to time the wakeup at
desired intervals. This clock has low power consumption, which makes it ideal for operation in low-power modes. The
Bluetooth specification requires an accuracy of ±250 ppm for Basic Rate/Enhanced Data Rate (BR/EDR) and ±500
ppm for Bluetooth Low Energy (BLE). Therefore, the LPO accuracy must lie within this range if there is an active
Bluetooth operation.

The LPO uses one of the following possible sources:

▪ Low Power Xtal (LPX): This clock is derived from the external main crystal oscillator but runs in low-power mode
during sleep. LPX typically has a frequency of 1 MHz, which is derived from the 24-MHz crystal and provides a
clock accuracy of 20 ppm or better but consumes relatively more current compared to other LPO sources. LPX is
useful when maintaining a BR/EDR connection in a master role where high accuracy is required. It can
sometimes also serve as a substitute for the external 32-kHz crystal.

▪ External LPO clock: CYW208xx has pins to which an external digital clock or a 32.768-kHz crystal can be
connected. The accuracy should be within ±250 ppm as required by the Bluetooth specification. If an external
LPO is used, then the PMU will use this under all conditions when a 20-ppm clock is not required. If a 20-ppm
clock is required at any time, then the LPX will be used instead of the external LPO clock.

▪ Internal LPOs: The internal LPOs belong to the Lean High Land (LHL) domain, which is always powered ON.
There are two internal LPOs: one which has lower accuracy and consumes less current, and another with higher
accuracy but consumes more current. These LPOs are calibrated by the PMU and used based on the accuracy
required by the BT subsystem.

3.3.2 PMU Tasks with Respect to LPO (Software)

Switching: The PMU switches between different LPOs. Active peripherals can request a clock with a particular ppm
value so that the PMU can select an appropriate LPO source based on the required ppm. The PMU might also turn
OFF unused LPO sources to save power. The usual preference for the LPO source is in the following order: External
LPO clock > Internal LPO > LPX. Although it is possible for WICED Bluetooth devices to enter low-power modes using
internal LPOs, it is recommended to use an external LPO.

Calibration: The PMU calibrates internal LPOs at regular intervals to improve accuracy. The calibration is performed
against the 24-MHz external crystal. The PMU calibrates internal LPOs every 500 ms when active. If in low-power
mode, the calibration is done when the chip wakes up. The calibration takes place only if the internal LPOs are selected
as the source.

3.3.3 PMU Operat ion

The PMU module executes from the context of the lowest-priority thread (Idle thread). It interacts with other modules
to determine whether it can put the system to sleep. The PMU collects the necessary information to determine whether
to go to sleep and the duration of sleep. The PMU manages the states of the clocks and the LDO voltages in low-power
modes.

Power modes differ in the following aspects:

▪ Blocks that are turned OFF

▪ Duration for which the system goes to sleep

▪ Accuracy of the internal clock while sleeping

▪ Wakeup sequences

3.4 Implementing Low Power in ModusToolbox

The PMU determines all power mode transitions. The firmware can control whether ePDS, Timed-Wake, or HID-Off
are allowed, but it cannot not prevent Idle or Sleep. It is up to the PMU to determine which sleep mode to enter
depending on scheduled events. For example, even if the user firmware allows ePDS, the PMU may decide not to go
into ePDS because of an event scheduled for a short time in the future. In that case, going to ePDS would not be
beneficial because there is time (and power) required to shut down and re-initialize the system. The PMU can transition
to Idle or Sleep at any time. Figure 3 shows the flow for entering low-power modes.

http://www.cypress.com/

 CYW208xx BLE Low-Power Guidelines

www.cypress.com Document Number: 002-25270 Rev. *B 6

Figure 3. Low-Power Mode Transitions

User Application WICED BT Stack PMU

Configure sleep
wiced_sleep_configure()

Initialize WICED BT stack
wiced_bt_stack_init()

WICED BT stack enabled

Sleep permission
low_power_sleep_handler()1

Permission reply
Return from

low_power_sleep_handler()1

Sleep permission
(other blocks)

Permission reply
(other blocks)

Sleep if permission
granted

1 – low_power_sleep_handler is a custom function implemented in the example referenced in the application note.

You should implement your own function per your requirements. See Section 3.4.3 for more details.

In firmware, you configure sleep by providing wake sources and by providing a callback function that the PMU will call
whenever it wants to go to low-power mode. In the callback function, you can disallow sleep, allow sleep without
shutdown (ePDS), or allow sleep with shutdown (Timed-Wake/HID-Off) depending on your firmware requirements. You
also provide a post-sleep callback that the PMU calls after it wakes up from ePDS or PDS. This call can be used to
initialize peripherals that lose their context when the device enters ePDS.

http://www.cypress.com/

 CYW208xx BLE Low-Power Guidelines

www.cypress.com Document Number: 002-25270 Rev. *B 7

Do the following to enable low power in your application:

1. Add sleep header files.

2. Set up sleep configuration.

3. Create a sleep callback function.

4. Create a post-sleep callback function.

5. Create wakeup events (timers, threads, etc.)

6. Check for reset reason (For HID-Off and Timed-Wake).

3.4.1 Sleep Header Fi les

The header file wiced_sleep.h contains the API functions related to low-power operation of CYW208xx. This header
file must be included in the source code to call sleep API functions.

3.4.2 Sleep Configurat ion

The function wiced_sleep_configure is used to enable low-power operation of the device. The parameter passed to

this function is a pointer to a structure of type wiced_sleep_config_t that contains the sleep configuration information.

The structure is defined like this:

/** This structure defines the sleep configuration parameters to be passed to

 * wiced_sleep_configure API

*/

typedef struct

{

 wiced_sleep_mode_type_t sleep_mode; /**< Defines whether to sleep with or

without transport */

 wiced_sleep_wake_type_t host_wake_mode; /**< Defines the active level for host wake

signal */

 wiced_sleep_wake_type_t device_wake_mode; /**< Defines the active level for device

wake signal. If device wake signal is not

present on the device then GPIO defined in

device_wake_gpio_num is used */

 uint8_t device_wake_source; /**< Device wake source(s). See 'wake

sources' defines for more details. GPIO is

mandatory if WICED_SLEEP_MODE_TRANSPORT is

used as sleep_mode*/

 uint32_t device_wake_gpio_num; /**< GPIO# for device wake, mandatory for

WICED_SLEEP_MODE_TRANSPORT */

 wiced_sleep_allow_check_callback sleep_permit_handler; /**< Call back to be called by sleep

framework to poll for sleep permission */

 wiced_sleep_post_sleep_callback post_sleep_cback_handler; /**< Callback to application on wake

 from sleep */

}wiced_sleep_config_t;

In the firmware, you need to do the following for sleep configuration:

1. Declare a global variable of type wiced_sleep_config_t.

2. Initialize all the elements of the structure just after stack initialization.

3. Call wiced_sleep_configure().

The elements in the structure are:

sleep_mode: WICED_SLEEP_MODE_NO_TRANSPORT or WICED_SLEEP_MODE_TRANSPORT.

http://www.cypress.com/

 CYW208xx BLE Low-Power Guidelines

www.cypress.com Document Number: 002-25270 Rev. *B 8

If you select the former, the device will enter sleep only if no host is connected (i.e., HCI UART CTS line not asserted).
If you select the latter, the device will enter sleep only when an external HCI host is connected (i.e., HCI UART CTS
line is asserted). If the device is being used stand-alone without an external HCI host, you should choose
WICED_SLEEP_NO_TRANSPORT.

host_wake_mode: WICED_SLEEP_WAKE_ACTIVE_LOW or WICED_SLEEP_WAKE_ACTIVE_HIGH depending on the

polarity of the interrupt to wake the host (if a host is connected). This only applies if sleep_mode is

WICED_SLEEP_MODE_TRANSPORT. The Host Wake function is on a dedicated device pin, but it can be multiplexed into

other I/Os (this multiplexing feature is not currently supported in the API).

device_wake_mode: WICED_SLEEP_WAKE_ACTIVE_LOW or WICED_SLEEP_WAKE_ACTIVE_HIGH depending on the

polarity of the interrupt for the host to wake the device (if a host is connected). This only applies if sleep_mode is

WICED_SLEEP_MODE_TRANSPORT. The Device Wake function is on a dedicated device pin, but it can be multiplexed into

other I/Os (this multiplexing feature is not currently supported in the API). This pin is not available on the 208xx 40-pin
package, but the device_wake_source pin can be used for this purpose.

device_wake_source: The wake source can be keyscan, quadrature sensor, GPIO, or a combination of those. For

example, you may want to use an interrupt from a sensor as a GPIO wake source so that the device wakes whenever
new sensor data is available.

/** Wake sources.*/

#define WICED_SLEEP_WAKE_SOURCE_KEYSCAN (1<<0) /**< Enable wake from keyscan */

#define WICED_SLEEP_WAKE_SOURCE_QUAD (1<<1) /**< Enable wake from quadrature sensor */

#define WICED_SLEEP_WAKE_SOURCE_GPIO (1<<2) /**< Enable wake from GPIO */

device_wake_gpio_num: This entry specifies the GPIO that is used to wake the device from sleep. This only applies if

device_wake_source includes GPIO. Another way to configure the GPIO for wake up is to register the GPIO for

interrupt in the user application.

sleep_permit_handler: This element requires you to provide a function pointer for the callback function that will be

called by the PMU to request sleep permission and when sleep is entered. This function will be described next.

post_sleep_cback_handler: This element requires you to provide a function pointer for the callback function that

will be called by the PMU after the device wakes up from ePDS or PDS. This function will be described below.

3.4.3 Sleep Cal lback Funct ion

The sleep permission callback function takes one argument of type wiced_sleep_poll_type_t, which specifies the

reason for the callback (WICED_SLEEP_POLL_SLEEP_PERMISSION or WICED_SLEEP_POLL_TIME_TO_SLEEP); it returns

a uint32_t.

For a WICED_SLEEP_POLL_SLEEP_PERMISSION callback, the return value must be one of the following based on

firmware requirements:

▪ WICED_SLEEP_NOT_ALLOWED – The application can return this value if it does not want the device to enter ePDS

or PDS mode.

▪ WICED_SLEEP_ALLOWED_WITHOUT_SHUTDOWN -– When this value is returned, the device can enter any low-power

mode, including ePDS.

▪ WICED_SLEEP_ALLOWED_WITH_SHUTDOWN -– When this value is returned, the device will enter Timed-Wake or HID-

Off mode.

For a WICED_SLEEP_POLL_TIME_TO_SLEEP callback, you must return the maximum time that the system should be

allowed to sleep for ePDS mode. This is typically set to WICED_SLEEP_MAX_TIME_TO_SLEEP, but may also be returned

as ‘0’ if you don't want the system to go to sleep at that time. If you want to wake at a specific time, it is better to use a
timer. You should not depend on this parameter as a wake source for ePDS mode.

If you want to enter Timed-Wake mode (i.e., HID-Off with wakeup at a predetermined time), this parameter can be used
to specify the time the device should remain HID-Off mode. For example, if you pass 10000000, the device will enter
HID-Off mode for 10 seconds. If you specify WICED_SLEEP_MAX_TIME_TO_SLEEP, the device will enter HID-Off mode

and will not wake until a GPIO interrupt occurs.

Remember that the PMU makes the final decision – it polls the firmware and each peripheral to see which type of sleep
is allowed and how long sleep will be possible, and then decides which mode is possible.

http://www.cypress.com/

 CYW208xx BLE Low-Power Guidelines

www.cypress.com Document Number: 002-25270 Rev. *B 9

3.4.4 Post-Sleep Cal lback Funct ion

The post-sleep callback function takes one argument of type wiced_bool_t, which specifies whether the application

needs to re-initialize any peripherals. If the parameter value is TRUE, the peripherals need to be re-initialized and
configured; otherwise not. Only the PUART is initialized by the stack by default, so you don’t need to re-initialize it. The
return type is void.

3.4.5 Wakeup Events

The firmware may need events that cause it to wake periodically or on specific events. For example, you may need to
read a sensor value every few seconds or respond to a user input such as a button press.

For periodic wakeup, you can either use a timer or threads with delays that allow the thread to sleep (i.e.,
ALLOW_THREAD_TO_SLEEP). The device will not enter ePDS/PDS unless all threads and timers are in a sleep state.

As previously discussed, during sleep configuration, the device wake source may be configured. If that source is set to
GPIO, the specified GPIO will wake the system. However, you will not get a GPIO interrupt handler callback unless you
register the callback function using wiced_hal_gpio_register_pin_for_interrupt.

3.4.6 Entering HID-Off /Timed-Wake

HID-Off and Timed-Wake modes can be entered by returning WICED_SLEEP_ALLOWED_WITH_SHUTDOWN from the sleep

permission callback function for the WICED_SLEEP_POLL_SLEEP_PERMISSION case. You specify the time to sleep (for

Timed-Wake) by returning the time to sleep value from the sleep permission callback function for the
WICED_SLEEP_POLL_TIME_TO_SLEEP case. See Sleep Callback Function for more details.

Note the following:

▪ If you are using internal LPOs, the PMU will switch to a higher-accuracy LPO when in a connection, which will
consume a higher current.

▪ If the device gets disconnected, the PMU needs some time to switch to a low-accuracy LPO.

3.4.7 Wakeup Reason

After waking up from HID-Off or Timed-Wake mode, the device starts from the reset vector. The wakeup reason can
be determined by using the following API function call:

wiced_sleep_wake_reason_t wiced_sleep_hid_off_wake_reason(void);

This function will return the wakeup reason to the application as Power-On Reset (POR), wakeup from timed-wake
mode, or GPIO wakeup.

3.5 Recommendations for Low Power

3.5.1 Use CYW208xx to Gate Current Paths

GPIOs P26, P27, P28, and P29 can source and sink higher currents (16 mA at 3.3 V and 8 mA at 1.8 V) than the rest
of the GPIOs. These GPIOs can be used to directly power some external peripherals (like a temperature sensor that
falls within the current limit). The power to the external peripherals can then directly be controlled through the
CYW208xx device; when not required, the peripherals can be turned OFF, thus saving power at the system level.

3.5.2 Disable Unused Blocks

You can save unnecessary current by disabling unused blocks like PWM and UARTs using the driver APIs.

3.5.3 Periodic Wakeup Timers

The average power consumption is determined by the CPU active period power consumption and CPU sleep period
power consumption. To achieve the lowest power consumption, the CPU sleep period should be maximized, and the
CPU active period should be minimized. All the low-power modes except HID-Off can maintain advertising (with same
data) or a connection (by sending empty packets), so the application does not have to wake the device just to advertise
or maintain a connection. If you want to periodically read and send data, you can use application timers to wake the
device.

3.5.4 Clocks

In some designs which require extensive data processing by the CPU, running the CPU at faster clock speeds can
reduce average power consumption. The aim is to reduce the time spent by the CPU in active mode and race to lower
power modes.

http://www.cypress.com/

 CYW208xx BLE Low-Power Guidelines

www.cypress.com Document Number: 002-25270 Rev. *B 10

3.5.5 GPIOs

GPIOs can hold their logic states in low-power modes (ePDS and Timed-Wake/HID-Off). This is helpful when you need
to hold external logic at a fixed level, but it can lead to wasted power if the pins needlessly source or sink current. Also,
upon wakeup from ePDS and Timed-Wake/HID-Off mode the GPIOs will go to High-Z. You can use the following
function if you want a specific GPIO to maintain its state upon wakeup from low-power modes:

wiced_hal_gpio_slimboot_reenforce_cfg((uint8_t pin, uint16_t config)

You should analyze your system design and determine the best state for your GPIOs during low power operation. If
holding a digital output pin at logic 1 or 0 is best, match the same digital level using the following function:

void wiced_hal_gpio_set_pin_output(UINT32 pin, UINT32 val);

Configure all unused GPIOs to High-Z unless there is a specific reason to use a different drive mode. This can be either
done in the platform config file or using the following API function:

wiced_hal_gpio_configure_pin (WICED_P00, (GPIO_OUTPUT_DISABLE | GPIO_INPUT_DISABLE),

GPIO_PIN_OUTPUT_LOW);

3.5.6 RTOS

The CYW208xx device supports ThreadX by Express Logic which is built into the device ROM and a license is included
for anyone using WICED chips. WICED provides wrapper APIs for using RTOS features. The RTOS can be used to
reduce the CPU active time by using threads for running various tasks and using mechanisms such as mutexes and
semaphores to communicate between the threads. If properly done, this can eliminate the use of timers and polling in
your application.

For example, consider an application running two tasks: Task1 and Task2. Task2 is dependent on completion of Task1.
Instead of polling a flag of some sort to allow Task2 to run, you can set a semaphore in Task1 which will immediately
allow Task2 to run once Task1 completes. This will avoid polling for a flag and thus will eliminate wasted CPU power.

4 Low Power Code Example

4.1 CE225540 – CYW208xx Switching Between Power Modes

This code example shows how to enter and exit ePDS and HID-Off/Timed-Wake. This example will be used to show
how to calculate average current consumption. The project uses a switch to transition between various power modes.
For more details, see document CE – CYW208xx Low Power available along with the code example in the Cypress
GitHub repo.

5 Summary
Many power management options can be used in CYW208xx devices. By following proper methods, you can optimize
your design and ensure that the power modes and features of the CYW208xx give the best option for the lowest power
consumption without degrading the performance of battery powered devices.

http://www.cypress.com/
https://www.cypress.com/mtb-github
https://www.cypress.com/mtb-github

 CYW208xx BLE Low-Power Guidelines

www.cypress.com Document Number: 002-25270 Rev. *B 11

6 Related Documents

Application Notes

AN225684 - Getting started with CYW208xx
Describes CYW208xx Bluetooth SoC and how to build your first BLE application using
the device in ModusToolbox IDE

Code Examples

Visit the Cypress GitHub site for a comprehensive collection of code examples using ModusToolbox IDE

Device Documentation

CYW20819 Device Datasheet

Development Kit

CYW920819EVB-02 Evaluation Kit

Tool Documentation

ModusToolbox IDE The Cypress IDE for IoT designers

About the Author and Contributors
Name: Abhishek Khinvesra

Title: Staff Applications Engineer

Background: Abhishek Khinvesra has a B.Tech degree in Electronics and Instrumentation Engineering
from Vellore Institute of Technology, India. He has many years of experience in developing
BLE-based applications.

http://www.cypress.com/
http://www.cypress.com/an225684
https://www.cypress.com/mtb-github
https://www.cypress.com/datasheet/CYW20819
http://www.cypress.com/CYW920819EVB-02
http://www.cypress.com/modustoolbox

 CYW208xx BLE Low-Power Guidelines

www.cypress.com Document Number: 002-25270 Rev. *B 12

Document History
Document Title: AN225270 - CYW208xx BLE Low-Power Guidelines

Document Number: 002-25270

Revision ECN Submission Date Description of Change

** 6498021 03/01/2019 New Application Note

*A 6619159 07/10/2019 Updated document title

Updated document to include all CYW208xx devices

Added details about PDS mode

Added details about post-sleep callback

Added details about delay requirement before HID-Off

Added details about GPIO reinforce API

Added details about wakeup reason API

*B 6757678 12/20/2019 Changes related to Timed-Wake/HID-Off mode

http://www.cypress.com/

 CYW208xx BLE Low-Power Guidelines

www.cypress.com Document Number: 002-25270 Rev. *B 13

Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the
office closest to you, visit us at Cypress Locations.

Products
Arm® Cortex® Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Projects | Videos | Blogs | Training |
Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
 198 Champion Court
 San Jose, CA 95134-1709

© Cypress Semiconductor Corporation, 2019. This document is the property of Cypress Semiconductor Corporation and its subsidiaries (“Cypress”). This document,
including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the
United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph,
grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you
do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive,
nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and
reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form
externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims
of Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with
Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS
DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures
implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of
a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING
CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER
SECURITY INTRUSION (collectively, “Security Breach”). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release
Cypress from any claim, damage, or other liability arising from any Security Breach. In addition, the products described in these materials may contain design
defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves
the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit
described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference
purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this
information and any resulting product. “High-Risk Device” means any device or system whose failure could cause personal injury, death, or property damage.
Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. “Critical Component” means any component of a
High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk Device, or to affect its safety or
effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any use
of a Cypress product as a Critical Component in a High-Risk Device. You shall indemnify and hold Cypress, its directors, officers, employees, agents, affiliates,
distributors, and assigns harmless from and against all claims, costs, damages, and expenses, arising out of any claim, including claims for product liability, personal
injury or death, or property damage arising from any use of a Cypress product as a Critical Component in a High-Risk Device. Cypress products are not intended
or authorized for use as a Critical Component in any High-Risk Device except to the limited extent that (i) Cypress’s published data sheet for the product explicitly
states Cypress has qualified the product for use in a specific High-Risk Device, or (ii) Cypress has given you advance written authorization to use the product as a
Critical Component in the specific High-Risk Device and you have signed a separate indemnification agreement.
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or
registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and
brands may be claimed as property of their respective owners.

http://www.cypress.com/
http://www.cypress.com/?id=1062
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wireless-connectivity
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/psoc-5lp
http://cypress.com/psoc6
http://www.cypress.com/cdc
https://community.cypress.com/welcome
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

	1 Introduction
	2 Cypress Resources
	2.1 ModusToolbox
	2.2 Development Kits

	3 CYW208xx Power Management Device Resources
	3.1 System Power Modes
	3.2 Device Power Domains
	3.3 Power Management Unit (PMU)
	3.3.1 Low-Power Oscillator (Hardware)
	3.3.2 PMU Tasks with Respect to LPO (Software)
	3.3.3 PMU Operation

	3.4 Implementing Low Power in ModusToolbox
	3.4.1 Sleep Header Files
	3.4.2 Sleep Configuration
	3.4.3 Sleep Callback Function
	3.4.4 Post-Sleep Callback Function
	3.4.5 Wakeup Events
	3.4.6 Entering HID-Off/Timed-Wake
	3.4.7 Wakeup Reason

	3.5 Recommendations for Low Power
	3.5.1 Use CYW208xx to Gate Current Paths
	3.5.2 Disable Unused Blocks
	3.5.3 Periodic Wakeup Timers
	3.5.4 Clocks
	3.5.5 GPIOs
	3.5.6 RTOS

	4 Low Power Code Example
	4.1 CE225540 – CYW208xx Switching Between Power Modes

	5 Summary
	6 Related Documents
	Document History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions
	Cypress Developer Community
	Technical Support

