
Spectral Additive Synthesis Module – Technical Reference Manual

Contents

1 Technical spec ... 3

2 MIDI Implementation .. 4

3 WaveSet .. 4

3.1 Note Sector: .. 5

3.2 Intensity Layer: .. 7

3.3 Morphing... 8

4 Wave Table ... 10

4.1 Wave Table Increment .. 11

4.2 Pitch resolution ... 12

4.3 Increment lookup for MIDI notes ... 13

4.4 Populating the Wave Table ... 13

4.5 Skipping calculation of unheard frequencies .. 14

4.6 Use of a ‘rough’ WaveTable .. 14

4.7 Wave Table refresh rate ... 15

5 Body resonance filter .. 16

5.1 Band gain levels .. 16

5.2 Fitting frequencies to bands ... 18

5.3 Interpolation of filtering ... 18

5.3.1 Calculation of filter gain for a given frequency ... 19

6 Noise reduction ... 21

6.1 Audio circuit considerations ... 21

6.2 Pre-emphasis and de-emphasis .. 21

6.2.1 Circuit de-emphasis ... 21

6.2.2 Tone processor pre-emphasis ... 22

6.3 Automatic Gain control (AGC) .. 23

6.3.1 AGC Ring buffer and windows .. 23

6.3.2 AGC output and HAAS delay ... 25

6.3.3 Calculating the required envelope ‘target’ gain ... 26

7 Tone Loudness and Intensity .. 27

8 Low Frequency Oscillators (LFOs) ... 28

8.1 Tables .. 28

8.2 MIDI Controllers and LFO Depth Envelopes.. 29

8.3 Tremolo LFO .. 29

8.3.1 Tremolo frequency .. 29

Spectral Additive Synthesis Module – Technical Reference Manual

8.3.2 Tremolo LFO gain .. 30

8.3.3 Tremolo LFO offset gain .. 31

8.4 Timbre LFO .. 33

8.4.1 Timbre envelopes .. 33

8.4.2 Timbre LFO frequency ... 33

8.4.3 Timbre LFO gain .. 34

8.4.4 Timbre LFO offset gain .. 34

9 Performances and PatchSets .. 35

Spectral Additive Synthesis Module – Technical Reference Manual

1 Technical spec

Specification Value

Amplitude limiting method Look-ahead AGC with two windows of 128 samples each. The AGC
guarantees that there is no amplitude overshoot.

Audio Sampling rate 41.7KHz

Connectors Un-balanced 3.5mm Stereo jack (audio out), USB, MIDI input,
3.5mm power (tip is +ve)

Digital to Analog Controller
(DAC)

16-bit resolution (14-bit accuracy), Second-order digital Delta-
Sigma modulator, 256x oversampling ratio

Dimensions (PCB) 144.8mm x 94.0mm

Frequency response 27.5Hz (Note A0) to 15kHz (the harmonics are limited by code and
prevented from being generated if above 15kHz).

MIDI Control-change refresh
rate on module

100Hz. MIDI control-change messages might be sent to the
Module at a higher frequency, but internally the Module
processes the changes at 100 Hz. This applies to pitch-bend also.

MIDI note range A0 (MIDI note 21) to C8 (MIDI note 108). This is the range of a
standard 88-note keyboard.

Note pitch error +/- 5% max (which is undetectable by most humans)

Patches Maximum of 18 saved on the Module, but unlimited in the Patch
Editor software.

Performances Maximum of 7 saved on the Module, but unlimited in the Patch
Editor software.

Power consumption 1.3W

Signal-To-Noise (SNR) ratio Typically around 60dB but can vary depending on the type of
waveforms played

Supply current ~ 400mA but can vary depending on tasks being performed

Supply voltage 5V 'wall-wart' regulated DC supply, dropped down to a 3.3V
regulated DC board voltage

Synthesis method Additive synthesis using 32 harmonics in total. This generates a
WaveTable per note. The WaveTable refreshes during play
enabling 'Timbre Morphing'. Parallel processing of tone generation
across 6 'Tone Processor' dsPICs, mixed and outputted by a 'Mixer'
dsPIC via an on-board DAC.

System clock A 16MHz crystal on the PCB is the global clock source for all dsPIC
chips. However this frequency is multiplied up internally in each
chip to much higher frequencies. The dsPICs run at 70MIPS (Tone
Processors) and 40MIPS (Mixer).

System memory 64K bytes, held on a dedicated EEPROM chip. Patch data for up to
18 patches is held on this chip.

Timbre refresh rate Varies depending on the number of notes (instances) being
handled by a Tone Processor chip, and also the number of
harmonics being processed, but typically around 50 Hz.

Volume control method Simple bit-scaling, so there is a reduction in quality at low volume

Weight (PCB) ~100g

Spectral Additive Synthesis Module – Technical Reference Manual

2 MIDI Implementation

Function ... Transmitted Recognized Remarks

Basic Channel - 01-Jun

Depending on

Performance

Note number - 21 - 108

Velocity

Note ON - O v=0 - 127

Note OFF - O v=0 - 127

Pitch Bend - O 0 - 8,192 Bank Select

Control Change Modulation

0,32 - O Breath Controller

1 - O Foot Controller

2 - O Expression

4 - O Effect Controller1

11 - O Sustain pedal

12 - O 18 Patches in memory

64 - O

Program Change - O 0 - 17

System Exclusive - X

Common - X

System Real Time - X

Aux Messages

All Sound Off - X

Reset All Cntrls - X

Turns all note

instances off

Local ON/OFF - X

All Notes OFF - O

Active Sense

Reset - X

O : Yes

X : No

3 WaveSet

A patch has an associated WaveSet, which is comprised of a set of waveforms. There are

actually 75 waveforms in a WaveSet, split into 15 blocks of 5 :

Spectral Additive Synthesis Module – Technical Reference Manual

Figure 1 : Waveforms in a WaveSet

Each block represents a specific combination of 'Note Sector' and 'Intensity Layer' .

Within each block are 5 waveforms. These waveforms are made by summing harmonics

together (the basis of additive synthesis).

All waveforms can be different in a WaveSet, offering the possibility of a whole range of

sounds depending on the variables of Intensity, Note Sector and Waveform control.

The Waveform chosen can be based on the value of the Timbre Envelope, or on a MIDI

'continuous controller' value.

3.1 Note Sector:
The notes on a keyboard are divided into 'Sectors'.

Sector
MIDI Note

Num Symbol

Sector
0

0 21 A0

1 22 A#0

Spectral Additive Synthesis Module – Technical Reference Manual

2 23 B0

3 24 C1

4 25 C#1

5 26 D1

6 27 D#1

7 28 E1

8 29 F1

9 30 F#1

10 31 G1

11 32 G#1

12 33 A1

13 34 A#1

14 35 B1

15 36 C2

Sector
1

0 37 C#2

1 38 D2

2 39 D#2

3 40 E2

4 42 F2

5 42 F#2

6 43 G2

7 44 G#2

8 45 A2

9 46 A#2

10 47 B2

11 48 C3

12 49 C#3

13 50 D3

14 51 D#3

15 52 E3

Sector
2

0 53 F3

1 54 F#3

2 55 G3

3 56 G#3

4 57 A3

5 58 A#3

6 59 B3

7 60 C4

8 61 C#4

9 62 D4

10 63 D#4

11 64 E4

12 65 F4

13 66 F#4

14 67 G4

Spectral Additive Synthesis Module – Technical Reference Manual

15 68 G#4

Sector
3

0 69 A4

1 70 A#4

2 71 B4

3 72 C5

4 73 C#5

5 74 D5

6 75 D#5

7 76 E5

8 77 F5

9 78 F#5

10 79 G5

11 80 G#5

12 81 A5

13 82 A#5

14 83 B5

15 84 C6

Sector
4

0 85 C#6

1 86 D6

2 87 D#6

3 88 E6

4 89 F6

5 90 F#6

6 91 G6

7 92 G#6

8 93 A6

9 94 A#6

10 95 B6

11 96 C7

12 97 C#7

13 98 D7

14 99 D#7

15 100 E7

101 F7

102 F#7

103 G7

104 G#7

105 A7

106 A#7

107 B7

108 C8

3.2 Intensity Layer:

Spectral Additive Synthesis Module – Technical Reference Manual

The intensity that a note is played is slit into 'Layers'. There are 3 layers.

The intensity control doesn’t have to be MIDI velocity, which can be very useful for

simulating non-keyboard instruments :

Figure 2 : Intensity control

3.3 Morphing

Figure 3 : WaveSet Waveforms are across 3 dimensions

In reality the waveform that is actually played is calculated by interpolating in 3 dimensions

as shown in the diagram above. This 'Timbre' therefore morphs as the values of the 3

variables change. The rate of this morphing is typically 50Hz and this is adequate for human

hearing to identify the change as 'smooth'.

Spectral Additive Synthesis Module – Technical Reference Manual

When Timbres are refreshed in a Tone Processor WaveTable (in method

CalculateInstanceWavetable), the calculation involves a number of linear interpolation

steps :

Figure 4 : Calculating the harmonic level at (Nt,It,Wt) using linear interpolation

Figure 5 : Step1: Interpolate on W0 plane

Spectral Additive Synthesis Module – Technical Reference Manual

Figure 6 : Step2: Interpolate on W1 plane

Figure 7 : Step3: Interpolate the final result

4 Wave Table
The Spectral Sound Module generates sound by dynamically creating the waveform of a played
instrument note in a Wave Table, and then looping through this waveform to generate sound. This
waveform might regularly keep updating as the sound progresses, depending on the patch.

Spectral Additive Synthesis Module – Technical Reference Manual

Figure 8: Wave Table

Figure 9: Single Waveform Cycle defined by Wave Table

A Wave Table is simply an array holding 2048 Word values (signed 16 bit), or ‘samples’. The Wave
Table samples hold a single cycle of a waveform. A Wave Table Index variable points to the current
sample.

Each instance of a played note has a separate Wave Table. A Tone Processor chip on the Module
holds 4 Wave Tables, because it has 4 note polyphony – i.e. it can play 4 notes simultaneously.

4.1 Wave Table Increment

If the Wave Table values are sampled sequentially at the sampling rate of the module (41,666.66Hz),
then the number of waveform cycles generated in a second(Hz) = 41,666.66/2048 = 20.345 Hz. This
is therefore the lowest frequency that the module is capable of generating.

Higher frequencies of the waveform are generated by incrementing the Wave Table index by more
than one. The increment value is held in a special Wave Table Increment variable.

Figure 10: Wave Table Increment

ID

Sample

(16bit Word)

0 4562

1 4582

2 356

3 22

… …

2047 -32100

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Whole Fraction.

Spectral Additive Synthesis Module – Technical Reference Manual

This variable is a single, unsigned, 16-bit Word value where the increment value has a whole and
fractional component. The whole component being the upper 11 bits and the fractional the lower 5
bits. This means that the precision of the increment value is 1/25 or 1/32.

The lowest increment has a whole component of 1, which is the lowest frequency of 20.345Hz
mentioned above. The highest increment has a whole component of 211 -1 or 2047, which is a
frequency of 20.345x 2047Hz = 41,646Hz. However the real upper frequency used by the module is
much less, since the Nyquist theorem limits the useable upper frequency to half the sampling rate,
i.e 41,666.66/2 = 20,833Hz.

Figure 11: Increment frequency range

4.2 Pitch resolution

The fractional component of the increment is used to improve pitch accuracy when generating the
waveform.

In humans the threshold at which a change in pitch is just noticeable is about 5% of a semitone,
which is 5 ‘cents’ in musical terms, which is a 20th of a semitone. A rise of a semitone corresponds to
multiplying the frequency by 21/12 or approximately 1.0595, which is a 6% increase. So humans can
discriminate an increase of a 20th of this, which is approximately a 0.3% increase in frequency.

The formula for the Wave Table waveform frequency is :

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝐻𝑧) = (
𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑊𝑎𝑣𝑒𝑇𝑎𝑏𝑙𝑒𝑆𝑎𝑚𝑝𝑙𝑒𝑠
) ∗ (

𝑊𝑎𝑣𝑒𝑇𝑎𝑏𝑙𝑒𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡

32
)

= (
41,666.66

2048
) ∗ (

𝑊𝑎𝑣𝑒𝑇𝑎𝑏𝑙𝑒𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡

32
)

= 𝟎. 𝟔𝟑𝟓𝟕𝟖 ∗ 𝑾𝒂𝒗𝒆𝑻𝒂𝒃𝒍𝒆𝑰𝒏𝒄𝒓𝒆𝒎𝒆𝒏𝒕

So the finest resolution of frequency is 0.63578Hz. For very low frequencies this level of resolution is
problematic, whereas for high frequencies it is more than adequate. We can calculate the frequency
where a change in the increment Word by 1 will be perceptible to humans:

0.63578 + 𝑓

𝑓
= 1.003

0.63578 + 𝑓 = 1.003𝑓

𝑓 = 212 𝐻𝑧 (𝑟𝑜𝑢𝑔ℎ𝑙𝑦 𝐺# 𝑏𝑒𝑙𝑜𝑤 𝑚𝑖𝑑𝑑𝑙𝑒 𝐶)

We can plot the resolution of the Wave Table Increment against frequency :

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 20.345Hz

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 41,646Hz

Waveform

Frequency

Whole Fraction

.

Spectral Additive Synthesis Module – Technical Reference Manual

Figure 12: Pitch resolution

So anything below G#3 has a less-than-ideal resolution, whereas everything above is fine.

4.3 Increment lookup for MIDI notes

The Module uses an 88 note lookup table, NoteSTIncLookup, for the Wave Table Increment values.
Standard full-size pianos have 88 keys.

Each MIDI note number from 21 (A0) to 108(C8) has a corresponding (pre-calculated) increment
value, representing the fundamental frequency of the note.

4.4 Populating the Wave Table

The Wave Table waveform is calculated in the Module by adding the waveforms of all the relevant
harmonics. The ‘Timbre’ is the word used to describe the collection of harmonics used in a sound,
and their levels. These harmonic levels are specified for the waveforms relating to a patch, but they
are also interpolated levels, arising from multi-dimensional parameters used by the Module (note
intensity, note-sector etc).

Figure 13 : Specifying harmonic levels in the app

Spectral Additive Synthesis Module – Technical Reference Manual

The Spectral app, and also the internal Module mathematics, ensure that the summed waveform is
‘normalised’ to a range of a signed 16-bit Word (a sample in the Wave Table). Sometimes additional
tweaking is necessary via a ‘patch gain’ parameter in the Spectral app to ensure that clipping doesn’t
occur.

Each harmonic is a Sine wave at a specified level. The Module does not worry about the phase of
each harmonic, only the level. This is because human sound perception is very good at ignoring the
phase component of sound – and has to be because of sound reflection. Phase ‘can’ make a
difference to perceived sound, especially sounds interacting together, but largely it is fine to ignore
it.

The Module populates the Wave Table samples by first populating harmonic 0 (the fundamental), by
looking up the Sine values and adjusting by the harmonic level. It then looping through all remaining,
relevant harmonics, adding to what’s already in the Wave Table.

Sine values are obtained from lookup table SineLookup. Using a lookup is the fastest method.
However for harmonics above the fundamental the Sine value used is obtained via an
interpolated_sine_lookup function. This function interpolates between Sine values in the SinLookup
table and this interpolation comes into play for odd harmonics. It’s debateable how this nuance
might be noticeable in the end sounds, but it’s relatively easy to achieve in code !

4.5 Skipping calculation of unheard frequencies

When the Module plays a note, the fundamental frequency of the note being played, in Hz, is also
looked up, via the NoteHzLookup table. The frequencies of all the harmonics used can be simply
calculated from this value because all harmonics are exact integer multiples of this fundamental
frequency (note that the module does not cater for in-harmonic partials).

If the frequency of any harmonic is above the max_audio_freq then no calculation is performed.

This frequency has been set to be 15kHz, which is under the Nyquist requirement of half the

sampling frequency (
41,666.66𝐻𝑧

2
= 20,833.33𝐻𝑧). The lower the max_audio_freq value, the more

calculations will be dropped and the faster the waveform calculation, however this needs to be
balanced against the ‘often-quoted’ human hearing range of 20Hz-20kHz. The upper average limit in
adults is more like 15kHz and so this frequency is used !

The Module can specify 31 harmonics above the fundamental, i.e. the upper harmonic is 31 x
fundamental frequency.

• Note A#4 has a frequency of 466.1Hz. 31 x 466.1Hz = 14,449Hz.

• Note B4 has a frequency of 466.1Hz. 31 x 493.9Hz = 15,311Hz.

Therefore harmonics will be dropped, and waveform calculation faster, for any notes played that are
above A#4.

4.6 Use of a ‘rough’ WaveTable

Each Tone Processor chip has a 4 note polyphony, meaning that 4 Wave Tables can be used for up to
4 notes played simultaneously. However it wouldn’t be possible to calculate the contents of a Wave
Table at the same time as it was being played ! Therefore the Module uses a separate ‘rough’ Wave
Table in which to perform calculations.

• Once calculations are complete and this Wave Table is ready to be used, then the system
points the desired note instance to this table, now as a ‘live’ table.

• The previous Wave Table pointed to by the instance now becomes the new ‘rough’ table.

Spectral Additive Synthesis Module – Technical Reference Manual

This method of using pointers is very fast and avoids naively physically copying data between a
rough and live Wave Table.

4.7 Wave Table refresh rate

Calculating a new waveform is a background task on the Tone Processor chip and due to the
complexity of foreground tasks (primarily actually looking up and modifying waveform samples for
the Module’s output) the time to calculate a waveform is variable. As with all calculations ‘the faster
the better’, but from a human perception point of view it’s unlikely that a human can discern a
timbre changing with a period less than 10ms. The majority of timbre recalculation on the Module is
within this.

Spectral Additive Synthesis Module – Technical Reference Manual

5 Body resonance filter
For real musical instruments the body of the instrument greatly affects the sound produced. For
example a violin body resonates at different frequencies. This is in effect a ‘master EQ filter’ applied
across the generated sound.

Creating anything but the simplest filters electronically is complex. However a very useful aspect of
additive synthesis is that filtering can be achieved by simply scaling the harmonics being added. So
the Module has the ability to define ‘Body Resonance Filters’. The filter looks like a graphic EQ :

Figure 14: Body resonance filter bands

A traditional graphic EQ has frequency bands defined logarithmically, because humans have a non-
linear perception of sound. Typically there is a third of an octave interval between each band. Since
raising a note by an octave is doubling the frequency, then to raise a frequency by a third of an
octave is achieved by multiplying the frequency by 21/3.

The Module has 32 ‘third of an octave’ bands, covering a frequency range of 16Hz to 20.6KHz. The
first band is actually irrelevant because it is below the lowest frequency that the module can
generate (20.345Hz). The graphical display highlights the range 1KHz to 4kHz in red, because this is
the range that human hearing is most sensitive to.

5.1 Band gain levels

The Band gain levels are held as unsigned 16-bit Word values, both in the Spectral app and also in
the Module. The levels displayed in the app are logarithmic and the table below shows the mapping
between the values held in the app table (‘App Table Value’) and the dB level on the app display, and
also the actual band level slider value within the app :

Spectral Additive Synthesis Module – Technical Reference Manual

Figure 15 : Mapping of Band values to dB and to app slider values

Note that the range of cut and boost available in the app is only +/- 12dB, shown in yellow. This is a
table value range of 64 to 1024 and a slider range of -8192 to 8191. This limited range is because the
system only works well for relatively gentle filtering.

Once the levels are transmitted to the Model, the Module only applies the Band gain levels by
attenuation. The levels set in the Spectral app table are scaled by a calculated filter_scaling_factor
before being sent to the Module.

This factor is calculated by scanning all the band levels and finding the maximum level, then :

𝑓𝑖𝑙𝑡𝑒𝑟 𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 =
65535

max(𝑙𝑒𝑣𝑒𝑙)

‘Normalising’ all Band levels by multiplying with this factor ensures that the maximum Band level is a
value of 65535.

In the Module, the filter gain for an harmonic falling in a frequency band b is therefore :

𝑓𝑖𝑙𝑡𝑒𝑟 𝑔𝑎𝑖𝑛 =
𝑙𝑒𝑣𝑒𝑙𝑏

65536

Or in code :

hg = (uint16_t)(__builtin_muluu(ih[0],get_filter_gain(freq_hz))>>16);

Note that although the filter displayed in the Spectral app shows a positive and negative dB scale,
this method translates the end result into just attenuation, which has the same overall effect.

Scaling Factor : 13606.22

A B C D E

App Table

Value A/256 Log10(B)

dB level

(20Log10(B))

App slider

value

(C * scaling

factor)

65536 256 2.408239965 48.16479931 32767

32768 128 2.10720997 42.14419939 28671

16384 64 1.806179974 36.12359948 24575

8192 32 1.505149978 30.10299957 20479

4096 16 1.204119983 24.08239965 16383

2048 8 0.903089987 18.06179974 12287

1024 4 0.602059991 12.04119983 8191

512 2 0.301029996 6.020599913 4095

256 1 0 0 0

128 0.5 -0.301029996 -6.020599913 -4096

64 0.25 -0.602059991 -12.04119983 -8192

32 0.125 -0.903089987 -18.06179974 -12288

16 0.0625 -1.204119983 -24.08239965 -16384

8 0.03125 -1.505149978 -30.10299957 -20480

4 0.015625 -1.806179974 -36.12359948 -24576

2 0.0078125 -2.10720997 -42.14419939 -28672

1 0.00390625 -2.408239965 -48.16479931 -32768

Spectral Additive Synthesis Module – Technical Reference Manual

5.2 Fitting frequencies to bands

The Module must be able to determine the Band of any given frequency very efficiently. You might
think that it would simply be a matter of having the Band in a lookup table of the MIDI notes played.
However because the Module can apply vibrato (pitch modulation) and pitch-bend to waveforms
then it needs to be able to calculate the Band ‘on the fly’.

The method used involves two lookup tables, one for frequencies below 272Hz and one for
frequencies above.

For the ‘upper’ lookup table (EqBandLookupOver271Hz) : The index to the lookup table is first
calculated by dividing the frequency by 16 (shift right by 4). This table holds 1024 lookup Band values
covering frequencies of 16Hz to 16384Hz (each 16Hz apart). The lower 16 entries (16Hz to 256Hz)
are unused but the code is simpler to just have these unused values in place.

For the ‘lower’ table (EqBandLookup271HzAndLess): If we used the same approach for frequencies
below 272Hz we find that this wouldn’t cover bands 1,2, and 5. So instead, this lookup is for all the
256 individual frequencies between 16Hz and 271Hz.

The code to establish the Band that a given frequency occupies, is then simply :

if (freq_hz <= 271)

 {b= EqBandLookup271HzAndLess[freq_hz - 16];}

else

 {b= EqBandLookupOver271Hz[freq_hz>>4];}

5.3 Interpolation of filtering

The graphic EQ filtering needs to be smooth across frequencies, because we can’t have sudden
jumps in applied filtering between bands. To achieve this, the Module uses straight-line
interpolation between the gain levels set by adjacent Bands. The table that holds the band gain
levels also has a ‘slope’ value that indicates the slope of the interpolation line between one band
level and the next.

Figure 16: Body resonance bands table

The Band gain level is an unsigned 16-bit Word value. The Slope is a signed 16-bit Word value.

The slope values are calculated by the Spectral app and entered into the table, where :

𝑆𝑙𝑜𝑝𝑒 𝑣𝑎𝑙𝑢𝑒 =
𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑙𝑒𝑣𝑒𝑙

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

So if we have Bandb and Bandb+1 then :

• The change in level is the level at Bandb+1 minus the level at Bandb.

• The change in frequency is the frequency of Bandb+1 minus the the frequency of Bandb.

Pre-calculating the slope values in the Spectral app just makes the Module faster.

Band : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Level :

Slope :

Spectral Additive Synthesis Module – Technical Reference Manual

The actual slope value has a whole and fractional component. It is a signed value with a range
between -32768/32 to 32767/32 = -1024 to 1023

Figure 17: Slope value

The use of a fractional component is necessary in order to cope with shallow slopes.

This fairly small range is a limitation of the Module, however the expectation is that graphic EQ
filtering wouldn’t be too ‘notchy’ and the filtering would involve smoother transitions from one band
to the next, and hence shallower slopes.

The Spectral app includes a ‘View Module calculated filter’ button that displays a graph highlighting
where there is going to be overload, and hence inaccuracy of the slope values.

5.3.1 Calculation of filter gain for a given frequency

Figure 18: Interpolated filter gain

The calculation of the filter gain level, at a given frequency is relatively straightforward :

𝐹𝑖𝑙𝑡𝑒𝑟 𝑔𝑎𝑖𝑛 = 𝐿𝑒𝑣𝑒𝑙𝑏 + (𝑆𝑙𝑜𝑝𝑒 ∗ 𝑓𝑑𝑒𝑙𝑡𝑎)

Expressed in code :

fdelta= freq_hz - band_freq_lookup[b];

Note that fdelta is always a positive value.

Then we calculate the FilterGain value by interpolating :

uint16_t fdelta= freq_hz - band_freq_lookup[b];

 if (slope > 0)

 {

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Whole (signed)

.
Fraction

Spectral Additive Synthesis Module – Technical Reference Manual

 filter_gain = (uint16_t)(channel.patch.body_resonance_bands[b].level +
(uint16_t)(__builtin_mulus(fdelta,slope)>>5));

 }

else

 {

 filter_gain = channel.patch.body_resonance_bands[b].level - (uint16_t)(0 -
(int16_t)(__builtin_mulus(fdelta,slope)>>5));

 }

Spectral Additive Synthesis Module – Technical Reference Manual

6 Noise reduction
6.1 Audio circuit considerations

The Module’s audio circuitry include op-amps that must be isolated as much as possible from the
digital noise generated by all the digital integrated circuits. Standard design steps have been taken :

• Separate power supply regulator for the audio circuit.

• The audio and digital power regulators are linear and not switched mode (which are
inherently noisy).

• Audio circuitry kept separate from digital as much as possible with its own ground plane.

6.2 Pre-emphasis and de-emphasis

The Module uses an old audio trick of pre-emphasis and de-emphasis in order to reduce noise: The
generated sounds have pre-emphasis (effectively a high-pass filter) applied, then the in-circuit audio
amplifier has matching de-emphasis applied (low-pass filter). The noise that the circuit introduces
(especially digital electronics) is suppressed by the low-pass filter.

6.2.1 Circuit de-emphasis

The Module electronics has two sets of differential outputs from the DAC in the ‘Mixer’ DSPIC chip,
one for the audio Right channel and one for the Left. Each differential pair goes into a ‘differential
amplifier’ circuit as shown below.

Figure 19 : Module's Differential amplifier and low-pass filter

𝐺𝑎𝑖𝑛 𝑜𝑓 𝑐𝑖𝑟𝑐𝑢𝑖𝑡, 𝒘𝒊𝒕𝒉𝒐𝒖𝒕 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑜𝑟𝑠 =
𝑅2

𝑅1

𝐼𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒 𝑜𝑓 𝑎 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑜𝑟 𝑜𝑛 𝑖𝑡𝑠 𝑜𝑤𝑛(𝑖𝑛 𝑂ℎ𝑚𝑠) = 𝑍𝐶 =
1

2ᴨ𝐹𝐶

-

+

R1

R1

R2

R2

C

C

Differential
signal input

Output

Spectral Additive Synthesis Module – Technical Reference Manual

𝐼𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒 𝑜𝑓 𝐶 𝑖𝑛 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑤𝑖𝑡ℎ 𝑎 𝑟𝑒𝑠𝑖𝑠𝑡𝑜𝑟 𝑅 = 𝑍𝑅𝐶 =
𝑍𝐶 ∗ 𝑅

𝑍𝐶 + 𝑅

 𝑆𝑜 𝑔𝑎𝑖𝑛 𝑜𝑓 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝑤𝑖𝑡ℎ 𝑐𝑎𝑝𝑎𝑖𝑡𝑜𝑟𝑠 =
𝑍𝑅2𝐶

𝑅 1
 =

(
𝑍𝐶∗𝑅2

𝑍𝐶+𝑅2
)

𝑅1

The Module electronics have the following values, that give the frequency response shown below :

𝑅1 = 3300 𝑂ℎ𝑚𝑠, 𝑅2 = 4700 𝑂ℎ𝑚𝑠, 𝐶 = 0.1µ𝐹

Figure 20 : Amplifier frequency response

This is the ideal response based on exact resistor and capacitor values. Metal film resistors are used
with a tolerance of +/- 0.25% which is far better than standard resistor’s +/-5%. However the
capacitors used are ceramic multi-layer with a tolerance of +/-5%. It is difficult to get better
tolerance for through-hole capacitors. Capacitors are measured for their accuracy before being used
however.

This filtering suppresses the high frequency element of circuit noise, which is the whole purpose, but
brings the wanted musical tones (that have had emphasis applied, boosting high frequencies) back
to their wanted levels.

6.2.2 Tone processor pre-emphasis

The Tone processors add pre-emphasis, effectively boosting high frequencies, which mirrors the
circuit de-emphasis. However instead of actually boosting high frequencies, low frequencies are
attenuated. In a digital audio system where samples values need to be constrained within limited
‘headroom’, it’s easier to attenuate.

The circuit frequency response has been analysed and a simple method of attenuation chosen:

• 400-element bass_atten_lookup table.

• The index to the lookup table is based on the frequency/16.

• It only attenuates frequencies below 6384 Hz.

• The attenuation values are 0-65535

Spectral Additive Synthesis Module – Technical Reference Manual

Attenuation is a simple lookup and calculation, for frequencies below 6384Hz :

𝐺𝑎𝑖𝑛 = 𝐺𝑎𝑖𝑛 ∗ (
𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒

65536
)

This is the Module code (within the get_filter_gain function) :

if (freq_hz <= 6384)

{

filter_gain = (uint16_t)((__builtin_muluu(filter_gain,bass_atten_lookup[freq_hz>>4])) >> 16);

}

6.3 Automatic Gain control (AGC)

The Module uses an AGC in code, on the ‘Mixer’ DSPIC chip, to suppress peaks in the audio output,
effectively acting as a ‘limiter’. This effectively raises the overall signal-to-noise ratio of the device.

This isn’t the best thing to do from a purist audio perspective, because summed sounds should
always be just that, without alteration. For example, if you play two notes on the piano, the resulting
summed sound won’t be massaged in volume – it will always be the exact sum.

However there are huge, very noticeable benefits in noise reduction by using a limiter and an
argument can be made that digital audio often gets limited (compressed) further down stream
anyway ! The only caveat is that the AGC should try not to be too noticeably ‘aggressive’.

In the Module that AGC’s mission is to suppress peaks and scale the output down when necessary so
that the digital output value NEVER overflows. This is achieved via a 256 sample lookahead buffer
and applying a linear ramped gain envelope to ensure this criteria is always met.

A buffer of 256 samples, at our sampling rate of 41,666.66Hz contributes a latency of 6.14ms into
the system, but it’s still very worthwhile.

The operation of the AGC is quite complex but the code to implement it is quite efficient.

6.3.1 AGC Ring buffer and windows

The AGC uses a ring buffer of 256 samples, split into two equal ‘Windows’ :

Spectral Additive Synthesis Module – Technical Reference Manual

Figure 21 : AGC Ring Buffer and Windows

The buffer index is sequentially incremented at the sampling rate and for each increment of the
index a ‘256 old’ sample is read from the buffer index and the new sample is written to the buffer
index.

During the writing of a windows-worth of data, the peak of the signal is monitored, so that by the
end of the window we know what the peak was for that window.

We then use this peak to calculate a gain value, such that when this window of data is eventually
output, this gain value will ensure that ‘Output x GainValue’ does not exceed a given maximum
threshold (it does not exceed an int16 Word value). We know that we have 128 samples of data still
to read before we need to apply this gain value (the output is 256 samples behind the input), so we
also work out the gain envelope slope, so that the output gain can smoothly transition to this gain
value.

So we effectively ‘lookahead’ and use the peak information to ensure that we adjust the output gain
just in time to avoid any overload :

256
element

Ring
Buffer

Window 2 Window 1

Buffer
pointer

time

Window Window Window Window

Signal
peaks in Threshold

max value

Spectral Additive Synthesis Module – Technical Reference Manual

Figure 22 : Lookahead over time

If a peak is on the horizon then the gain slope is negative and this is termed ‘attack’. The slope of this
gain envelope is as steep as it has to be to guarantee that there won’t be overload. We ideally don’t
want this attack to be too aggressive, which is audibly noticeable, and the more lookahead the
better in this respect. However we also don’t want to add much latency to the system, because this
is a live musical instrument. So an AGC ring buffer size of 256 samples is a compromise.

If the signal level drops at the input then the AGC can ‘release’ and the gain level can return to unity
gain (i.e. no attenuation). However we don’t want to release immediately because :

• A quick release would be audible

• A ‘release’ envelope gain slope ‘could’ result in system overload if the slope is too steep.

•

6.3.2 AGC output and HAAS delay

The AGC buffer output is multiplied by the gain envelope, and as mentioned, this envelope ensures
that the output is not overloaded. This output is also scaled by a global Module gain value, which
relates to the Module’s volume potentiometer.

The output is then made into ‘pseudo-stereo’ using the ‘HAAS effect’. This is simply adding a sub-
40ms delay to the audio fed to one ear, which makes the audio appear to be in stereo, even though
it’s come from a mono source.

The Haas Effect, also sometimes called the precedence effect, is a psychoacoustic phenomenon that
causes a listener to perceive a space and direction of a sound when there is a slight delay between
stereo channels. The listener perceives that the sound takes place in the direction of the first, or
preceding, channel–even if the delay between the two channels is only a few milliseconds.

time

Output
Gain

Buffer
output

Buffer
input

Calc of Peak
A at end of
Window

Peak

Peak

The output gain ramps down to ensure that the
buffer output is attenuated, so peak A won’t

t0 t
1
 t

2
 t

3

Attack Release

Spectral Additive Synthesis Module – Technical Reference Manual

The Module allows the user to specify the HAAS delay up to the buffer size of 1100 samples, which is
a delay of 1100/41,666.66 seconds = 26.4ms (limited to 25ms in the app).

Figure 23 : Output from the AGC

6.3.3 Calculating the required envelope ‘target’ gain

The threshold is set to 32700. Any signal (int16 Word value) over that will be suppressed by an
envelope ‘target’ gain value that is looked up from a carefully constructed lookup table called
AGCNumeratorLookup. This table is indexed as follows:

Target = AGCNumeratorLookup[(uint16_t)((uint32_t)(agc.window_peak - threshold)>>11)]

This is the target gain that the current gain needs to change to, by linearly changing over time.

HAAS
delay
buffer

AGC Buffer output

Gain
envelope

value agc.output
L

agc.output
R

Global
gain

Spectral Additive Synthesis Module – Technical Reference Manual

7 Tone Loudness and Intensity
The MIDI velocity received by the Module has to be translated into appropriate ‘loudness’, in human
terms. The loudness curve, relating MIDI note velocity to signal amplitude, is traditionally more a
square-law relationship than logarithmic (there is research online, looking at a number of synth
responses). So this Module follows suit.

A Tone Processor in the Module translates the MIDI note velocity to a 16-bit, velocity16 value by use
of a lookup table called Velocity16Lookup:

uint16_t velocity16 = Velocity16Lookup[inon.velocity_id];

𝑉 = ((𝑉𝑚𝑖𝑑𝑖)2 ∗ 0.937008)/127 + 8

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦16 = 𝑉 ∗ 512 + 511

V is between 8 and 127. Velocity16 is between 4607 and 65535. The lookup table holds 128 values of
Velocity16 that map the MIDI note velocities, 0 to 127.

Figure 24 : Mapping loudness (linear scale)

Spectral Additive Synthesis Module – Technical Reference Manual

Figure 25 : Mapping loudness (log scale)

The curve on a logarithmic scale looks approximately linear, which is what we want, because
humans perceive loudness approximately logarithmically.

Note that the volume of played notes is also affected by the MIDI channel volume, that’s specified
on the Module as part of the Performance configuration. The raw MIDI notes velocity (e.data2
below) is scaled by the channel volume (0 to 255) as necessary :

if (performance_id != performance_id_not_set)

 {

 m.velocity_id = (uint8_t)((e.data2 *
performance[performance_id].pc[midi_channel].volume)>>8);

 }

else

 {

 m.velocity_id = e.data2;

 }

8 Low Frequency Oscillators (LFOs)
8.1 Tables

Spectral Additive Synthesis Module – Technical Reference Manual

8.2 MIDI Controllers and LFO Depth Envelopes

The LFOs have MIDI Controllers that affect :

• Frequency of the LFO

• Depth of the LFO signal

Each LFO has an associated depth envelope, and since all envelopes have associated ‘gain’
controllers, these do too. However these gain controllers make no sense here !

8.3 Tremolo LFO

8.3.1 Tremolo frequency

The frequency of the Tremolo LFO is set by the user in the app. However this frequency can also be
changed by an associated MIDI controller. A Tone Processor updates the frequency every 10ms in
process_10ms_event.

if (channel.patch.lfo_envelope_config[lfo_tremolo].enabled == 1)

 {

 ucc_value = GetLFOFreqEnvCCValue16(i,lfo_tremolo);

 instance[i].lfo_env_current[lfo_tremolo].current_wt_inc_q11_5 =

(uint16_t)(__builtin_muluu(channel.patch.lfo_envelope_config[lfo_tremolo].d

efault_wt_inc_q11_5,ucc_value)>>16);

 }

The user specified the MIDI Continuous Controller relating to the LFO frequency :

Table :
lfo_envelope_config

Table :
env_gain_CC

Spectral Additive Synthesis Module – Technical Reference Manual

GetLFOFreqEnvCCValue16 returns :

• 65535 if the controller is ‘None’

• The Velocity16 value (unsigned 16 bit) if the controller is set to Velocity. Note this is fixed at
the start of a note being played, since it’s derived from the MIDI velocity.

• Otherwise the current controller value (unsigned 16 bit)

ucc_value is the current value of this ‘used’ continuous controller value.

default_wt_inc_q11_5 is the default tremolo frequency, set by the user in the app. This value is
actually the Wave Table Increment value corresponding to frequency.

The new LFO frequency, current_wt_inc_q11_5, is calculated by scaling this value by ucc_value. i.e :

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑑𝑒𝑓𝑎𝑢𝑙𝑡 𝑥 (
𝑈𝐶𝐶𝑣𝑎𝑙𝑢𝑒

65536
)

8.3.2 Tremolo LFO gain

The Tremolo LFO oscillates at the calculated frequency. The magnitude of the LFO signal at any given
time is controlled by a number of factors :

• LFO envelope

• LFO oscillator ‘signal’ (waveform and frequency)

• Key scaling

• Current MIDI controller value affecting LFO depth

The LFO signal is termed a ‘gain’ signal because it is applied to the tone being produced by the Tone
Processor.

The lfo_env_current[lfo_tremolo].gain value is the ’current’, instantaneous amplitude of the LFO at
a moment in time, based on these factors. It is a signed 16-bit value that oscillates about zero with
an amplitude that depends on the envelope. It is updated every 1ms in the method called
process_1ms_event, which executes the following code :

StepLFOEnvelope(&channel.patch.lfo_envelope_config[lfo_tremolo],&channel.pa

tch.adsr_section[a].adsr_section_envelope_config[env_tremolo],&instance[i].

lfo_env_current[lfo_tremolo],a,i);

IEC0bits.T2IE = 0;

(See Stage 1 below)

instance[i].trem_offset_gain =

(uint16_t)((int32_t)instance[i].lfo_env_current[lfo_tremolo].gain +

((int32_t)(65535) -

((int32_t)instance[i].lfo_env_current[lfo_tremolo].depth_env_value>>1)));

(See Stage 2 below)

Spectral Additive Synthesis Module – Technical Reference Manual

instance[i].trem_offset_gain =

(uint16_t)(__builtin_muluu(instance[i].trem_offset_gain,GetEnvCCValue16(i,e

nv_tremolo))>>16);

(See Stage 3 below)

instance[i].trem_offset_gain =

(uint16_t)(__builtin_muluu(instance[i].trem_offset_gain,channel.volume)>>16

);

IEC0bits.T2IE = 1;

StepLFOEnvelope is a generic method that updates the lfo_env_current[lfo_tremolo].gain value. It
also updates the current LFO envelope value, called depth_env_value (an unsigned 16-bit value
between 0 and 65535). The gain value is scaled by the MIDI controller affecting LFO depth (if any).

8.3.3 Tremolo LFO offset gain

For the gain value to be useable, it needs to be offset to lie in a range of 0 to 65535.
trem_offset_gain is the adjusted, unsigned 16-bit, gain value, and is calculated in 3 stages :

Stage 1 : Simple level shift

𝑇𝑟𝑒𝑚𝑜𝑙𝑜𝑂𝑓𝑓𝑠𝑒𝑡𝐺𝑎𝑖𝑛 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑟𝑒𝑚𝑜𝑙𝑜𝐺𝑎𝑖𝑛 + (65535 − (
𝐷𝑒𝑝𝑡ℎ𝐸𝑛𝑣𝑉𝑎𝑙𝑢𝑒

2
))

This translates the gain value from a signed to unsigned value, plus level shifts. 65535 -
(DepthEnvValue/2) is the amount to shift the level :

Spectral Additive Synthesis Module – Technical Reference Manual

Stage 2 : Scale by Tremolo Depth Gain Controller value

𝑇𝑟𝑒𝑚𝑜𝑙𝑜𝑂𝑓𝑓𝑠𝑒𝑡𝐺𝑎𝑖𝑛 = 𝑇𝑟𝑒𝑚𝑜𝑙𝑜𝑂𝑓𝑓𝑠𝑒𝑡𝐺𝑎𝑖𝑛 ∗ (
EnvCCValue16

65536
)

GetEnvCCValue16 is a function that returns an unsigned 16-bit integer, for the ‘gain controller’ value
(in the env_gain_cc table) relating to the Tremolo depth envelope :

uint16_t GetEnvCCValue16(uint16_t i,uint16_t envelope_id)

{

 uint16_t ucc_id = channel.patch.env_gain_CC[envelope_id];

 if(ucc_id == ucc_none)

 {return 65535;}

 else if(ucc_id == ucc_velocity)

 {return instance[i].velocity16;}

 else

 {return channel.ucc_current_values[ucc_id];}

}

+ 32767

-32768

A D S R

 Time t

Tremolo depth envelope (unsigned)

DepthEnvValue/2 at time t

 Time t

Current gain at time t

Tremolo gain (signed)

65535

0

 Time t

Current gain at time t

Tremolo offset gain (unsigned)

65535

0

DepthEnvValue at time t

 + 65535

 0

Need to shift up by the amount of the
blue arrow

= 65535 – (DepthEnvValue/2)

The offset gain signal always has
it’s peak at a value of 65535.

Scaled by
LFO Depth CC

Scaled by
LFO Freq CC

Scaled by
LFO Envelope gain CC
(BUT MAKES NO SENSE!)

Spectral Additive Synthesis Module – Technical Reference Manual

NOTE: This controller makes no sense for Tremolo !

Stage 3 : Scale by the channel volume

This last stage is not really related to tremolo, but is an intermediate step in the final calculation of
the overall_gain value for the Tone Processor instance being played . It scales by the MIDI channel
volume :

𝑇𝑟𝑒𝑚𝑜𝑙𝑜𝑂𝑓𝑓𝑠𝑒𝑡𝐺𝑎𝑖𝑛 = 𝑇𝑟𝑒𝑚𝑜𝑙𝑜𝑂𝑓𝑓𝑠𝑒𝑡𝐺𝑎𝑖𝑛 ∗ (
ChannelVolume

65536
)

This final trem_offset_gain value is used to scale the output signal in the core Tone Processor
sample generation code (a method called UpdateSampleValue) :

instance[i].overall_gain =

__builtin_muluu(instance[i].trem_offset_gain,amplitude_depth_env_value)>>16

;

8.4 Timbre LFO

8.4.1 Timbre envelopes

Unlike Tremolo and Vibrato, Timbre has two envelopes :

• Env_timbre is displayed as ‘Timbre Morph’ and is used to Morph between waveforms in a
Waveform Block.

• Env_timbre_lfo is displayed a ‘Timbre lfo depth’ and as it’s name implies is used to vary the
Timbre LFO depth.

8.4.2 Timbre LFO frequency

Just as for Tremolo, the frequency of the Timbre LFO is set by the user in the app and this frequency
can also be changed by an associated MIDI controller. A Tone Processor updates this frequency
every 10ms in process_10ms_event.

ucc_value = GetLFOFreqEnvCCValue16(i,lfo_timbre);

instance[i].lfo_env_current[lfo_timbre].current_wt_inc_q11_5 =

(uint16_t)(__builtin_muluu(channel.patch.lfo_envelope_config[lfo_timbre].de

fault_wt_inc_q11_5,ucc_value)>>16);

Spectral Additive Synthesis Module – Technical Reference Manual

8.4.3 Timbre LFO gain

Again, just like Tremolo, the magnitude of the Timbre LFO signal at any given time is controlled by a
number of factors :

• LFO envelope

• LFO oscillator ‘signal’ (waveform and frequency)

• Key scaling

• Current MIDI controller value affecting LFO depth

For the Timbre LFO, the gain and lfo_timbre_offset_gain values are calculated every 10ms (not
1ms) in the process_10ms_event method. The method of calculation is the same as for Tremolo,
except there is only a single calculation stage for the offset gain :

StepLFOEnvelope(&channel.patch.lfo_envelope_config[lfo_timbre],&channel.pat

ch.adsr_section[a].adsr_section_envelope_config[env_timbre_lfo],&instance[i

].lfo_env_current[lfo_timbre],a,i);

IEC0bits.T2IE = 0;

instance[i].lfo_timbre_offset_gain =

(uint16_t)((int32_t)instance[i].lfo_env_current[lfo_timbre].gain +

((int32_t)(65535) -

((int32_t)instance[i].lfo_env_current[lfo_timbre].depth_env_value>>1)));

IEC0bits.T2IE = 1;

8.4.4 Timbre LFO offset gain

This final timbre_offset_gain value is used when the Wave Table is next recalculated, in the
CalculateInstanceWavetable method :

uint16_t timbre_gain =

__builtin_muluu(instance[instance_id].lfo_timbre_offset_gain,instance[insta

nce_id].env_current[env_timbre].depth_env_value_scaled_by_CC)>>16;

uint16_t w0 = timbre_gain >>14;

uint16_t w1 = w0 + 1;

uint16_t w = (uint16_t)((timbre_gain - (w0 << 14))>>6); //Range 0 to 255

if(w > 128){w++;}

uint16_t vw = 256 - w;

The timbre_offset_gain value is first scaled by the ‘Timbre morph’ envelope depth
value(depth_env_value_scaled_by_CC), which has been scaled by the ‘Gain controller’ associated
with the Timbre Morph envelope (env_timbre).

The waveforms to interpolate across (w0 and w1), are then calculated from this timbre_offset_gain
value.

Spectral Additive Synthesis Module – Technical Reference Manual

9 Performances and PatchSets
The Module can store a number of instrument sounds, or 'patches' internally. It can also

store configurations of 'performances' where multiple patches can be played in layers or

splits across the keyboard.

The way the performances are configured takes a bit of understanding, because of the

physical limitations of the device. However the method used gives maximum flexibility which

can be very useful.

Although there can be many patches held in a Spectral App file, the module itself can only

store a maximum of 18 patches. So there is a concept of 'PatchSets' that are collections of up

to 18 patches. The module is loaded with a PatchSet.

The patches on the module can further be used in 'Performances'. There can be a maximum

of 8 performances saved to the module. A performance specifies which patches are used on

MIDI channels 1 to 6, plus which channel each 'Tone Processor' chip on the module is

assigned to :

Figure 26: PatchSets and Performances

There are 6 Tone Processor chips. Each chip can only be assigned to one MIDI channel.

Therefore there is a maximum of 6 MIDI channels that can be used.

An important point is that multiple Tone Processors can be assigned to the same MIDI

channel. This means that you can distribute the processing power as you see fit. As an

Spectral Additive Synthesis Module – Technical Reference Manual

example, suppose you wanted to play a simple bass accompaniment in the left hand but

piano chords in the right hand. The processing requirements of the bass are much less and

so would need fewer processors.

Patches and Performances are changed through MIDI Bank and Program Change

messages.

Figure 27: Patches in a PatchSet

Figure 28: Performances in a PatchSet

Each of 6 MIDI channels can be assigned a Patch, plus have an associated volume :

Spectral Additive Synthesis Module – Technical Reference Manual

Figure 29: Channel patch allocation

Each of the 6 'Tone Processors' on the module can be assigned to one of the 6 MIDI

channels. Multiple processors can be assigned to the same MIDI channel :

Figure 30: Processor Channel allocation

When notes are played, the module receives the MIDI channel of the note and looks across

all the Tone Processors that are associated with the channel, in order to work out which

Processor should handle this 'Note Instance'. If all instances are used up then 'note-stealing'

takes place, where the note in that channel that was played the earliest is dropped to make

way for the new note.

Since different channels can be used, the module does this calculation on each channel

separately. Therefore some channels can be witnessing note-stealing and others not.

Since there are 6 Tone Processors, then there can be a maximum of 6 different patches being

played, across six MIDI channels. If this was the case then since each Tone Processor can

handle a maximum of 3 Note Instances, then the system would be 3-note-polyphonic on

each channel !

So although quite complex, this system is very flexible.

