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1 Technical spec 
 

Specification Value 

Amplitude limiting method Look-ahead AGC with two windows of 128 samples each. The AGC 
guarantees that there is no amplitude overshoot. 

Audio Sampling rate 41.7KHz 

Connectors Un-balanced 3.5mm Stereo jack (audio out), USB, MIDI input, 
3.5mm power (tip is +ve) 

Digital to Analog Controller 
(DAC) 

16-bit resolution (14-bit accuracy), Second-order digital Delta-
Sigma modulator, 256x oversampling ratio 

Dimensions (PCB) 144.8mm x 94.0mm 

Frequency response 27.5Hz (Note A0) to 15kHz (the harmonics are limited by code and 
prevented from being generated if above 15kHz). 

MIDI Control-change refresh 
rate on module 

100Hz.  MIDI control-change messages might be sent to the 
Module at a higher frequency, but internally the Module  
processes the changes at 100 Hz. This applies to pitch-bend also. 

MIDI note range A0 (MIDI note 21) to C8 (MIDI note 108). This is the range of a 
standard 88-note keyboard.  

Note pitch error +/- 5% max (which is undetectable by most humans) 

Patches Maximum of 18 saved on the Module, but unlimited in the Patch 
Editor software. 

Performances Maximum of 7 saved on the Module, but unlimited in the Patch 
Editor software.  

Power consumption 1.3W 

Signal-To-Noise (SNR) ratio Typically around 60dB but can vary depending on the type of 
waveforms played 

Supply current  ~ 400mA but can vary depending on tasks being performed 

Supply voltage 5V 'wall-wart' regulated DC supply, dropped down to a 3.3V 
regulated DC board voltage 

Synthesis method Additive synthesis using 32 harmonics in total. This generates a 
WaveTable per note. The WaveTable refreshes during play 
enabling 'Timbre Morphing'. Parallel processing of tone generation 
across 6 'Tone Processor' dsPICs, mixed and outputted by a 'Mixer' 
dsPIC via an on-board DAC. 

System clock A 16MHz crystal on the PCB is the global clock source for all dsPIC 
chips. However this frequency is multiplied up internally in each 
chip to much higher frequencies. The dsPICs run at 70MIPS (Tone 
Processors) and 40MIPS (Mixer). 

System memory 64K bytes, held on a dedicated EEPROM chip. Patch data for up to 
18 patches is held on this chip. 

Timbre refresh rate Varies depending on the number of notes (instances) being 
handled by a Tone Processor chip, and also the number of 
harmonics being processed, but typically around 50 Hz. 

Volume control method Simple bit-scaling, so there is a reduction in quality at low volume 

Weight (PCB) ~100g  

 

 



Spectral Additive Synthesis Module – Technical Reference Manual 

2 MIDI Implementation 
 

Function ... Transmitted Recognized Remarks 

Basic Channel - 01-Jun 

Depending on 

Performance 

Note number - 21 - 108   

Velocity                  

Note ON - O  v=0 - 127   

Note OFF - O  v=0 - 127    

Pitch Bend - O  0 - 8,192 Bank Select 

Control Change             Modulation 

0,32 - O Breath Controller 

1 - O Foot Controller 

2 - O Expression 

4 - O Effect Controller1 

11 - O Sustain pedal 

12 - O 18 Patches in memory 

64 - O   

Program Change - O  0 - 17   

System Exclusive - X   

Common - X   

System Real Time - X   

Aux Messages        

All Sound Off - X   

Reset All Cntrls - X 

Turns all note 

instances off 

Local ON/OFF - X   

All Notes OFF - O   

Active Sense 

Reset - X   

O : Yes 

X : No 

3 WaveSet 
 

A patch has an associated WaveSet, which is comprised of a set of waveforms. There are 

actually 75 waveforms in a WaveSet, split into 15 blocks of  5 : 



Spectral Additive Synthesis Module – Technical Reference Manual 

 

Figure 1 : Waveforms in a WaveSet 

 

Each block represents a specific combination of 'Note Sector' and 'Intensity Layer' . 

 

Within each block are 5 waveforms. These waveforms are made by summing harmonics 

together (the basis of additive synthesis).  

 

All waveforms can be different in a WaveSet, offering the possibility of a whole range of 

sounds depending on the variables of Intensity, Note Sector and Waveform control.  

The Waveform chosen can be based on the value of the Timbre Envelope, or on a MIDI 

'continuous controller' value. 

 

 

3.1 Note Sector:  
The notes on a keyboard are divided into 'Sectors'.  

 

Sector 
MIDI Note 

Num Symbol 

Sector 
0 

0 21 A0 

1 22 A#0 
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2 23 B0 

3 24 C1 

4 25 C#1 

5 26 D1 

6 27 D#1 

7 28 E1 

8 29 F1 

9 30 F#1 

10 31 G1 

11 32 G#1 

12 33 A1 

13 34 A#1 

14 35 B1 

15 36 C2 

Sector 
1 

0 37 C#2 

1 38 D2 

2 39 D#2 

3 40 E2 

4 42 F2 

5 42 F#2 

6 43 G2 

7 44 G#2 

8 45 A2 

9 46 A#2 

10 47 B2 

11 48 C3 

12 49 C#3 

13 50 D3 

14 51 D#3 

15 52 E3 

Sector 
2 

0 53 F3 

1 54 F#3 

2 55 G3 

3 56 G#3 

4 57 A3 

5 58 A#3 

6 59 B3 

7 60 C4 

8 61 C#4 

9 62 D4 

10 63 D#4 

11 64 E4 

12 65 F4 

13 66 F#4 

14 67 G4 



Spectral Additive Synthesis Module – Technical Reference Manual 

15 68 G#4 

Sector 
3 

0 69 A4 

1 70 A#4 

2 71 B4 

3 72 C5 

4 73 C#5 

5 74 D5 

6 75 D#5 

7 76 E5 

8 77 F5 

9 78 F#5 

10 79 G5 

11 80 G#5 

12 81 A5 

13 82 A#5 

14 83 B5 

15 84 C6 

Sector 
4 

0 85 C#6 

1 86 D6 

2 87 D#6 

3 88 E6 

4 89 F6 

5 90 F#6 

6 91 G6 

7 92 G#6 

8 93 A6 

9 94 A#6 

10 95 B6 

11 96 C7 

12 97 C#7 

13 98 D7 

14 99 D#7 

15 100 E7     

101 F7     

102 F#7     

103 G7     

104 G#7     

105 A7     

106 A#7     

107 B7     

108 C8 

    

 

3.2 Intensity Layer:  
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The intensity that a note is played is slit into 'Layers'. There are 3 layers. 

 

The intensity control doesn’t have to be MIDI velocity, which can be very useful for 

simulating non-keyboard instruments : 

 

 

Figure 2 : Intensity control 

 

 

 

3.3 Morphing 

 

Figure 3 : WaveSet Waveforms are across 3 dimensions 

In reality the waveform that is actually played is calculated by interpolating in 3 dimensions 

as shown in the diagram above.  This 'Timbre' therefore morphs as the values of the 3 

variables change. The rate of this morphing is typically 50Hz and this is adequate for human 

hearing to identify the change as 'smooth'. 
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When Timbres are refreshed in a Tone Processor WaveTable (in method 

CalculateInstanceWavetable), the calculation involves a number of linear interpolation 

steps : 

 

Figure 4 : Calculating the harmonic level at (Nt,It,Wt) using linear interpolation 

 

Figure 5 : Step1: Interpolate on W0 plane 
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Figure 6 : Step2: Interpolate on W1 plane 

 

 

Figure 7 : Step3: Interpolate the final result 

 

4 Wave Table 
The Spectral Sound Module generates sound by dynamically creating the waveform of a played 
instrument note in a Wave Table, and then looping through this waveform to generate sound. This 
waveform might regularly keep updating as the sound progresses, depending on the patch. 
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Figure 8: Wave Table 

 

Figure 9: Single Waveform Cycle defined by Wave Table 

A Wave Table is simply an array holding 2048 Word values (signed 16 bit), or ‘samples’. The Wave 
Table samples hold a single cycle of a waveform. A Wave Table Index variable points to the current 
sample.  

Each instance of a played note has a separate Wave Table. A Tone Processor chip on the Module 
holds 4 Wave Tables, because it has 4 note polyphony – i.e. it can play 4 notes simultaneously. 

 

4.1 Wave Table Increment 

If the Wave Table values are sampled sequentially at the sampling rate of the module (41,666.66Hz), 
then the number of waveform cycles generated in a second(Hz) = 41,666.66/2048 = 20.345 Hz. This 
is therefore the lowest frequency that the module is capable of generating. 

Higher frequencies of the waveform are generated by incrementing the Wave Table index by more 
than one. The increment value is held in a special Wave Table Increment variable. 

 

Figure 10: Wave Table Increment 

ID

Sample 

(16bit Word)

0 4562

1 4582

2 356

3 22

… …

2047 -32100

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Whole Fraction.
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This variable is a single, unsigned, 16-bit Word value where the increment value has a whole and 
fractional component. The whole component being the upper 11 bits and the fractional the lower 5 
bits. This means that the precision of the increment value is 1/25 or 1/32.   

The lowest increment has a whole component of 1, which is the lowest frequency of 20.345Hz 
mentioned above. The highest increment has a whole component of  211 -1 or 2047, which is a 
frequency of 20.345x 2047Hz = 41,646Hz. However the real upper frequency used by the module is 
much less, since the Nyquist theorem limits  the useable upper frequency to half the sampling rate, 
i.e 41,666.66/2 = 20,833Hz. 

 

Figure 11: Increment frequency range 

4.2 Pitch resolution 

The fractional component of the increment is used to improve pitch accuracy when generating the 
waveform.  

In humans the threshold at which a change in pitch is just noticeable is about 5% of a semitone, 
which is 5 ‘cents’ in musical terms, which is a 20th of a semitone. A rise of a semitone corresponds to 
multiplying the frequency by 21/12 or approximately 1.0595, which is a 6% increase. So humans can 
discriminate an increase of a 20th of this, which is approximately a 0.3% increase in frequency. 

 

The formula for the Wave Table waveform frequency is : 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝐻𝑧) = (
𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑊𝑎𝑣𝑒𝑇𝑎𝑏𝑙𝑒𝑆𝑎𝑚𝑝𝑙𝑒𝑠
) ∗ (

𝑊𝑎𝑣𝑒𝑇𝑎𝑏𝑙𝑒𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡

32
) 

= (
41,666.66

2048
) ∗ (

𝑊𝑎𝑣𝑒𝑇𝑎𝑏𝑙𝑒𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡

32
) 

= 𝟎. 𝟔𝟑𝟓𝟕𝟖 ∗ 𝑾𝒂𝒗𝒆𝑻𝒂𝒃𝒍𝒆𝑰𝒏𝒄𝒓𝒆𝒎𝒆𝒏𝒕 

 

So the finest resolution of frequency is 0.63578Hz. For very low frequencies this level of resolution is 
problematic, whereas for high frequencies it is more than adequate. We can calculate the frequency 
where a change in the increment Word by 1 will be perceptible to humans: 

0.63578 + 𝑓

𝑓
= 1.003 

0.63578 + 𝑓 = 1.003𝑓 

𝑓 = 212 𝐻𝑧 (𝑟𝑜𝑢𝑔ℎ𝑙𝑦 𝐺# 𝑏𝑒𝑙𝑜𝑤 𝑚𝑖𝑑𝑑𝑙𝑒 𝐶) 

 

We can plot the resolution of the Wave Table Increment against frequency : 

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 20.345Hz

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 41,646Hz

Waveform 

Frequency

Whole Fraction

.
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Figure 12: Pitch resolution 

So anything below G#3 has a less-than-ideal resolution, whereas everything above is fine.  

4.3 Increment lookup for MIDI notes 

The Module uses an 88 note lookup table, NoteSTIncLookup, for the Wave Table Increment values. 
Standard full-size pianos have 88 keys.  

Each MIDI note number from 21 (A0) to 108(C8) has a corresponding (pre-calculated) increment 
value, representing the fundamental frequency of the note.  

4.4 Populating the Wave Table 

The Wave Table waveform is calculated in the Module by adding the waveforms of all the relevant 
harmonics. The ‘Timbre’ is the word used to describe the collection of harmonics used in a sound, 
and their levels. These harmonic levels are specified for the waveforms relating to a patch, but they 
are also interpolated levels, arising from multi-dimensional parameters used by the Module (note 
intensity, note-sector etc).  

 

Figure 13 : Specifying harmonic levels in the app 
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The Spectral app, and also the internal Module mathematics, ensure that the summed waveform is 
‘normalised’ to a range of a signed 16-bit Word (a sample in the Wave Table). Sometimes additional 
tweaking is necessary via a ‘patch gain’ parameter in the Spectral app to ensure that clipping doesn’t 
occur. 

Each harmonic is a Sine wave at a specified level. The Module does not worry about the phase of 
each harmonic, only the level. This is because human sound perception is very good at ignoring the 
phase component of sound – and has to be because of sound reflection.    Phase ‘can’ make a 
difference to perceived sound, especially sounds interacting together, but largely it is fine to ignore 
it. 

The Module populates the Wave Table samples by first populating harmonic 0 (the fundamental), by 
looking up the Sine values and adjusting by the harmonic level. It then looping through all remaining, 
relevant harmonics, adding to what’s already in the Wave Table.  

Sine values are obtained from lookup table SineLookup. Using a lookup is the fastest method. 
However for harmonics above the fundamental the Sine value used is obtained via an  
interpolated_sine_lookup function. This function interpolates between Sine values in the SinLookup 
table and this interpolation comes into play for odd harmonics. It’s debateable how this nuance 
might be noticeable in the end sounds, but it’s relatively easy to achieve in code ! 

4.5 Skipping calculation of unheard frequencies  

When the Module plays a note, the fundamental frequency of the note being played, in Hz, is also 
looked up, via the NoteHzLookup table. The frequencies of all the harmonics used can be simply 
calculated from this value because all harmonics are exact integer multiples of this fundamental 
frequency (note that the module does not cater for in-harmonic partials). 

If the frequency of any harmonic is above the max_audio_freq then no calculation is performed.  

This frequency has been set to be 15kHz, which is under the Nyquist requirement of half the 

sampling frequency (
41,666.66𝐻𝑧

2
= 20,833.33𝐻𝑧). The lower the max_audio_freq value, the more 

calculations will be dropped and the faster the waveform calculation, however this needs to be 
balanced against the ‘often-quoted’ human hearing range of 20Hz-20kHz. The upper average limit in 
adults is more like 15kHz and so this frequency is used ! 

The Module can specify 31 harmonics above the fundamental, i.e. the upper harmonic is 31 x 
fundamental frequency.  

• Note A#4 has a frequency of 466.1Hz. 31 x 466.1Hz = 14,449Hz. 

• Note B4 has a frequency of 466.1Hz. 31 x 493.9Hz = 15,311Hz. 

Therefore harmonics will be dropped, and waveform calculation faster, for any notes played that are 
above A#4. 

4.6 Use of a ‘rough’ WaveTable 

Each Tone Processor chip has a 4 note polyphony, meaning that 4 Wave Tables can be used for up to 
4 notes played simultaneously. However it wouldn’t be possible to calculate the contents of a Wave 
Table at the same time as it was being played !  Therefore the Module uses a separate ‘rough’ Wave 
Table in which to perform calculations.  

• Once calculations are complete and this Wave Table is ready to be used, then the system 
points the desired note instance to this table, now as a ‘live’ table.  

• The previous Wave Table pointed to by the instance now becomes the new ‘rough’ table. 
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This method of using pointers is very fast and avoids naively physically copying data between a 
rough and live Wave Table. 

4.7 Wave Table refresh rate 

Calculating a new waveform is a background task on the Tone Processor chip and due to the 
complexity of foreground tasks (primarily actually looking up and modifying waveform samples for 
the Module’s output) the time to calculate a waveform is variable. As with all calculations ‘the faster 
the better’, but from a human perception point of view it’s unlikely that a human can discern a 
timbre changing with a period less than 10ms. The majority of timbre recalculation on the Module is 
within this. 
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5 Body resonance filter 
For real musical instruments the body of the instrument greatly affects the sound produced. For 
example a violin body resonates at different frequencies. This is in effect a ‘master EQ filter’ applied 
across the generated sound. 

Creating anything but the simplest filters electronically is complex. However a very useful aspect of 
additive synthesis is that filtering can be achieved by simply scaling the harmonics being added. So 
the Module has the ability to define ‘Body Resonance Filters’. The filter looks like a graphic EQ : 

 

Figure 14: Body resonance filter bands 

A traditional graphic EQ has frequency bands defined logarithmically, because humans have a non-
linear perception of sound. Typically there is  a third of an octave interval between each band. Since 
raising a note by an octave is doubling the frequency, then to raise a frequency by a third of an 
octave is achieved by  multiplying the frequency by 21/3.  

The Module has 32 ‘third of an octave’ bands, covering a frequency range of 16Hz to 20.6KHz. The 
first band is actually irrelevant because it is below the lowest frequency that the module can 
generate (20.345Hz). The graphical display highlights the range 1KHz to 4kHz in red, because this is 
the range that human hearing is most sensitive to. 

5.1 Band gain levels 

The Band gain levels are held as unsigned 16-bit Word values, both in the Spectral app and also in 
the Module. The levels displayed in the app are logarithmic and the table below shows the mapping 
between the values held in the app table (‘App Table Value’) and the dB level on the app display, and 
also the actual band level slider value within the app : 
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Figure 15 : Mapping of Band values to dB and to app slider values 

Note that the range of cut and boost available in the app is only +/- 12dB, shown in yellow. This is a 
table value range of 64 to 1024 and a slider range of -8192 to 8191. This limited range is because the 
system only works well for relatively gentle filtering. 

Once the levels are transmitted to the Model, the Module only applies the Band gain levels by 
attenuation. The levels set in the Spectral app table are scaled by a calculated filter_scaling_factor 
before being sent to the Module.  

This factor is calculated by scanning all the band levels and finding the maximum level, then : 

𝑓𝑖𝑙𝑡𝑒𝑟 𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 =
65535

max(𝑙𝑒𝑣𝑒𝑙)
 

‘Normalising’ all Band levels by multiplying with this factor ensures that the maximum Band level is a 
value of 65535. 

In the Module, the filter gain for an harmonic falling in a frequency band b is therefore : 

𝑓𝑖𝑙𝑡𝑒𝑟 𝑔𝑎𝑖𝑛 =
𝑙𝑒𝑣𝑒𝑙𝑏

65536
 

Or in code : 

 

hg = (uint16_t)(__builtin_muluu(ih[0],get_filter_gain(freq_hz))>>16); 

 

 

Note that although the filter displayed in the Spectral app shows a positive and negative dB scale, 
this method translates the end result into just attenuation, which has the same overall effect. 

 

Scaling Factor : 13606.22

A B C D E

App Table 

Value A/256 Log10(B)

dB level 

(20Log10(B))

App slider 

value 

(C * scaling 

factor)

65536 256 2.408239965 48.16479931 32767

32768 128 2.10720997 42.14419939 28671

16384 64 1.806179974 36.12359948 24575

8192 32 1.505149978 30.10299957 20479

4096 16 1.204119983 24.08239965 16383

2048 8 0.903089987 18.06179974 12287

1024 4 0.602059991 12.04119983 8191

512 2 0.301029996 6.020599913 4095

256 1 0 0 0

128 0.5 -0.301029996 -6.020599913 -4096

64 0.25 -0.602059991 -12.04119983 -8192

32 0.125 -0.903089987 -18.06179974 -12288

16 0.0625 -1.204119983 -24.08239965 -16384

8 0.03125 -1.505149978 -30.10299957 -20480

4 0.015625 -1.806179974 -36.12359948 -24576

2 0.0078125 -2.10720997 -42.14419939 -28672

1 0.00390625 -2.408239965 -48.16479931 -32768
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5.2 Fitting frequencies to bands 

The Module must be able to determine the Band of any given frequency very efficiently. You might 
think that it would simply be a matter of having the Band in a lookup table of the MIDI notes played. 
However because the Module can apply vibrato (pitch modulation) and pitch-bend to waveforms 
then it needs to be able to calculate the Band ‘on the fly’. 

The method used involves two lookup tables, one for frequencies below 272Hz and one for 
frequencies above.  

For the ‘upper’ lookup table (EqBandLookupOver271Hz) : The index to the lookup table is first 
calculated by dividing the frequency by 16 (shift right by 4). This table holds 1024 lookup Band values 
covering frequencies of 16Hz to 16384Hz (each 16Hz apart). The lower 16 entries (16Hz to 256Hz) 
are unused but the code is simpler to just have these unused values in place. 

For the ‘lower’ table (EqBandLookup271HzAndLess): If we used the same approach for frequencies 
below 272Hz we find that this wouldn’t cover bands 1,2, and 5. So instead, this lookup is for all the 
256 individual frequencies between 16Hz and 271Hz. 

The code to establish the Band that a given frequency occupies, is then simply : 

 

if (freq_hz <= 271) 

        {b= EqBandLookup271HzAndLess[freq_hz - 16];} 

else 

        {b= EqBandLookupOver271Hz[freq_hz>>4];} 

 

5.3 Interpolation of filtering 

The graphic EQ filtering needs to be smooth across frequencies, because we can’t have sudden 
jumps in applied filtering between bands. To achieve this, the Module uses straight-line 
interpolation between the gain levels set by adjacent Bands. The table that holds the band gain 
levels also has a ‘slope’ value that indicates the slope of the interpolation line between one band 
level and the next.  

 

Figure 16: Body resonance bands table 

The Band gain level is an unsigned 16-bit Word value. The Slope is a signed 16-bit Word value. 

The slope values are calculated by the Spectral app and entered into the table, where : 

𝑆𝑙𝑜𝑝𝑒 𝑣𝑎𝑙𝑢𝑒 =
𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑙𝑒𝑣𝑒𝑙

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
 

So if we have Bandb and Bandb+1 then : 

• The change in level is the level at Bandb+1  minus the level at Bandb. 

• The change in frequency is the frequency of Bandb+1  minus the the frequency of Bandb. 

Pre-calculating the slope values in the Spectral app just makes the Module faster. 

Band : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Level :

Slope :
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The actual slope value has a whole and fractional component. It is a signed value with a range 
between  -32768/32 to 32767/32 = -1024 to 1023 

 

Figure 17: Slope value 

The use of a fractional component is necessary in order to cope with shallow slopes. 

This fairly small range is a limitation of the Module, however the expectation is that graphic EQ 
filtering wouldn’t be too ‘notchy’ and the filtering would involve smoother transitions from one band 
to the next, and hence shallower slopes.  

The Spectral app includes a ‘View Module calculated filter’ button that displays a graph highlighting 
where there is going to be overload, and hence inaccuracy of the slope values. 

 

5.3.1 Calculation of filter gain for a given frequency 

 

Figure 18: Interpolated filter gain 

The calculation of the filter gain level, at a given frequency is relatively straightforward : 

𝐹𝑖𝑙𝑡𝑒𝑟 𝑔𝑎𝑖𝑛 = 𝐿𝑒𝑣𝑒𝑙𝑏 + (𝑆𝑙𝑜𝑝𝑒 ∗ 𝑓𝑑𝑒𝑙𝑡𝑎)  

Expressed in code : 

fdelta= freq_hz - band_freq_lookup[b]; 

Note that fdelta is always a positive value. 

Then we calculate the FilterGain value by interpolating : 

 

uint16_t fdelta= freq_hz - band_freq_lookup[b]; 

 

 if (slope > 0) 

    { 

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Whole (signed)

.
Fraction
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    filter_gain = (uint16_t)(channel.patch.body_resonance_bands[b].level + 
(uint16_t)(__builtin_mulus(fdelta,slope)>>5)); 

    } 

else 

    { 

    filter_gain = channel.patch.body_resonance_bands[b].level - (uint16_t)(0 - 
(int16_t)(__builtin_mulus(fdelta,slope)>>5)); 

    } 
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6 Noise reduction 
6.1 Audio circuit considerations 

The Module’s audio circuitry include op-amps that must be isolated as much as possible from the 
digital noise generated by all the digital integrated circuits. Standard design steps have been taken : 

• Separate power supply regulator for the audio circuit. 

• The audio and digital power regulators are linear and not switched mode (which are 
inherently noisy). 

• Audio circuitry kept separate from digital as much as possible with its own ground plane. 

6.2 Pre-emphasis and de-emphasis 

The Module uses an old audio trick of pre-emphasis and de-emphasis in order to reduce noise: The 
generated sounds have pre-emphasis (effectively a high-pass filter) applied, then the in-circuit audio 
amplifier has matching de-emphasis applied (low-pass filter). The noise that the circuit introduces 
(especially digital electronics) is suppressed by the low-pass filter. 

6.2.1 Circuit de-emphasis 

The Module electronics has two sets of differential outputs from the DAC in the ‘Mixer’ DSPIC chip, 
one for the audio Right channel and one for the Left. Each differential pair goes into a ‘differential 
amplifier’ circuit as shown below. 

 

 

Figure 19 : Module's Differential amplifier and low-pass filter 

 

𝐺𝑎𝑖𝑛 𝑜𝑓 𝑐𝑖𝑟𝑐𝑢𝑖𝑡, 𝒘𝒊𝒕𝒉𝒐𝒖𝒕 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑜𝑟𝑠 =
𝑅2

𝑅1
 

𝐼𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒 𝑜𝑓 𝑎 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑜𝑟 𝑜𝑛 𝑖𝑡𝑠 𝑜𝑤𝑛(𝑖𝑛 𝑂ℎ𝑚𝑠) = 𝑍𝐶 =  
1

2ᴨ𝐹𝐶
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𝐼𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒 𝑜𝑓 𝐶 𝑖𝑛 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑤𝑖𝑡ℎ 𝑎 𝑟𝑒𝑠𝑖𝑠𝑡𝑜𝑟 𝑅 = 𝑍𝑅𝐶 =
𝑍𝐶 ∗ 𝑅

𝑍𝐶 + 𝑅
 

  𝑆𝑜 𝑔𝑎𝑖𝑛 𝑜𝑓 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝑤𝑖𝑡ℎ 𝑐𝑎𝑝𝑎𝑖𝑡𝑜𝑟𝑠 =
𝑍𝑅2𝐶

𝑅 1
 =

( 
𝑍𝐶∗𝑅2

𝑍𝐶+𝑅2
)

𝑅1

 

The Module electronics have the following values, that give the frequency response shown below : 

𝑅1 = 3300 𝑂ℎ𝑚𝑠, 𝑅2 = 4700 𝑂ℎ𝑚𝑠, 𝐶 = 0.1µ𝐹 

 

Figure 20 : Amplifier frequency response 

This is the ideal response based on exact resistor and capacitor values. Metal film resistors are used 
with a tolerance of +/- 0.25% which is far better than standard resistor’s +/-5%.  However the 
capacitors used are ceramic multi-layer with a tolerance of +/-5%. It is difficult to get better 
tolerance for through-hole capacitors.  Capacitors are measured for their accuracy before being used 
however. 

This filtering suppresses the high frequency element of circuit noise, which is the whole purpose, but 
brings the wanted musical tones (that have had emphasis applied, boosting high frequencies) back 
to their wanted levels. 

6.2.2 Tone processor pre-emphasis 

The Tone processors add pre-emphasis, effectively boosting high frequencies, which mirrors the 
circuit de-emphasis.  However instead of actually boosting high frequencies, low frequencies are 
attenuated. In a digital audio system where samples values need to be constrained within limited 
‘headroom’, it’s easier to attenuate. 

The circuit frequency response has been analysed and a simple method of attenuation chosen: 

• 400-element bass_atten_lookup table.  

• The index to the lookup table is based on the frequency/16.  

• It only attenuates frequencies below 6384 Hz.   

• The attenuation values are 0-65535 
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Attenuation is a simple lookup and calculation, for frequencies below 6384Hz : 

𝐺𝑎𝑖𝑛 = 𝐺𝑎𝑖𝑛 ∗ (
𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒

65536
) 

 

This is the Module code (within the get_filter_gain function) : 

if (freq_hz <= 6384) 

{ 

filter_gain = (uint16_t)((__builtin_muluu(filter_gain,bass_atten_lookup[freq_hz>>4])) >> 16); 

} 

 

6.3 Automatic Gain control (AGC) 

The Module uses an AGC in code, on the ‘Mixer’ DSPIC chip, to suppress peaks in the audio output, 
effectively acting as a ‘limiter’. This effectively raises the overall signal-to-noise ratio of the device. 

This isn’t the best thing to do from a purist audio perspective, because summed sounds should 
always be just that, without alteration. For example, if you play two notes on the piano, the resulting 
summed sound won’t be massaged in volume – it will always be the exact sum. 

However there are huge, very noticeable benefits in noise reduction by using a limiter and an 
argument can be made that digital audio often gets limited (compressed) further down stream 
anyway ! The only caveat is that the AGC should try not to be too noticeably ‘aggressive’. 

In the Module that AGC’s mission is to suppress peaks and scale the output down when necessary so 
that the digital output value NEVER overflows. This is achieved via a 256 sample lookahead buffer 
and applying a linear ramped gain envelope to ensure this criteria is always met.  

A buffer of 256 samples, at our sampling rate of 41,666.66Hz contributes a latency of 6.14ms into 
the system, but it’s still very worthwhile. 

The operation of the AGC is quite complex but the code to implement it is quite efficient.  

 

6.3.1 AGC Ring buffer and windows 

The AGC uses a ring buffer of 256 samples, split into two equal ‘Windows’ : 
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Figure 21 : AGC Ring Buffer and Windows 

 

The buffer index is sequentially incremented at the sampling rate and for each increment of the 
index a ‘256 old’ sample is read from the buffer index and the new sample is written to the buffer 
index.  

During the writing of a windows-worth of data, the peak of the signal is monitored, so that by the 
end of the window we know what the peak was for that window. 

We then use this peak to calculate a gain value, such that when this window of data is eventually 
output, this gain value will ensure that ‘Output x GainValue’ does not exceed a given maximum 
threshold (it does not exceed an int16 Word value). We know that we have 128 samples of data still 
to read before we need to apply this gain value (the output is 256 samples behind the input), so we 
also work out the gain envelope slope, so that the output gain can smoothly transition to this gain 
value. 

So we effectively ‘lookahead’ and use the peak information to ensure that we adjust the output gain 
just in time to avoid any overload : 
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Figure 22 : Lookahead over time 

 

If a peak is on the horizon then the gain slope is negative and this is termed ‘attack’. The slope of this 
gain envelope is as steep as it has to be to guarantee that there won’t be overload. We ideally don’t 
want this attack to be too aggressive, which is audibly noticeable, and the more lookahead the 
better in this respect. However we also don’t want to add much latency to the system, because this 
is a live musical instrument. So an AGC ring buffer size of 256 samples is a compromise. 

If the signal level drops at the input then the AGC can ‘release’ and the gain level can return to unity 
gain (i.e. no attenuation). However we don’t want to release immediately because : 

• A quick release would be audible 

• A ‘release’ envelope gain slope ‘could’ result in system overload if the slope is too steep. 

•  

6.3.2   AGC output and HAAS delay 

The AGC buffer output is multiplied by the gain envelope, and as mentioned, this envelope ensures 
that the output is not overloaded. This output is also scaled by a global Module gain value, which 
relates to the Module’s volume potentiometer. 

The output is then made into ‘pseudo-stereo’ using the ‘HAAS effect’. This is simply adding a sub-
40ms delay to the audio fed to one ear, which makes the audio appear to be in stereo, even though 
it’s come from a mono source. 

The Haas Effect, also sometimes called the precedence effect, is a psychoacoustic phenomenon that 
causes a listener to perceive a space and direction of a sound when there is a slight delay between 
stereo channels. The listener perceives that the sound takes place in the direction of the first, or 
preceding, channel–even if the delay between the two channels is only a few milliseconds. 
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The Module allows the user to specify the HAAS delay up to the buffer size of 1100 samples, which is 
a delay of 1100/41,666.66 seconds = 26.4ms (limited to 25ms in the app). 

 

Figure 23 : Output from the AGC 

 

6.3.3 Calculating the required envelope ‘target’ gain 

The threshold is set to 32700. Any signal (int16 Word value) over that will be suppressed by an 
envelope ‘target’ gain value that is looked up from a carefully constructed lookup table called 
AGCNumeratorLookup.  This table is indexed as follows: 

   

 

Target = AGCNumeratorLookup[(uint16_t)((uint32_t)(agc.window_peak - threshold)>>11)] 

 

 

This is the target gain that the current gain needs to change to, by linearly changing over time. 
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7 Tone Loudness and Intensity 
The MIDI velocity received by the Module has to be translated into appropriate ‘loudness’, in human 
terms. The loudness curve, relating MIDI note velocity to signal amplitude, is traditionally more a 
square-law relationship than logarithmic (there is research online, looking at a number of synth 
responses). So this Module follows suit. 

A Tone Processor in the Module translates the MIDI note velocity to a 16-bit, velocity16 value by use 
of a lookup table called Velocity16Lookup: 

 

uint16_t velocity16 = Velocity16Lookup[inon.velocity_id]; 

 

 

𝑉 = ((𝑉𝑚𝑖𝑑𝑖)2 ∗ 0.937008)/127 + 8 

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦16 = 𝑉 ∗ 512 + 511 

V is between 8 and 127. Velocity16 is between 4607 and 65535. The lookup table holds 128 values of 
Velocity16 that map the MIDI note velocities, 0 to 127. 

 

Figure 24 : Mapping loudness (linear scale) 
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Figure 25 : Mapping loudness (log scale) 

 

The curve on a logarithmic scale looks approximately linear, which is what we want, because 
humans perceive loudness approximately logarithmically. 

Note that the volume of played notes is also affected by the MIDI channel volume, that’s specified 
on the Module as part of the Performance configuration. The raw MIDI notes velocity (e.data2 
below) is scaled by the channel volume (0 to 255) as necessary :  

if (performance_id != performance_id_not_set) 

    { 

     m.velocity_id = (uint8_t)((e.data2 * 
performance[performance_id].pc[midi_channel].volume)>>8);  

    } 

else 

    { 

     m.velocity_id = e.data2; 

    } 

8 Low Frequency Oscillators (LFOs) 
8.1 Tables  

 



Spectral Additive Synthesis Module – Technical Reference Manual 

 

8.2 MIDI Controllers and LFO Depth Envelopes 

The LFOs have MIDI Controllers that affect : 

• Frequency of the LFO 

• Depth of the LFO signal 

 

Each LFO has an associated depth envelope, and since all envelopes have associated ‘gain’ 
controllers, these do too. However these gain controllers make no sense here !   

 

8.3 Tremolo LFO 

8.3.1 Tremolo frequency 

The frequency of the Tremolo LFO is set by the user in the app. However this frequency can also be 
changed by an associated MIDI controller. A Tone Processor updates the frequency every 10ms in 
process_10ms_event.  

 

 

if (channel.patch.lfo_envelope_config[lfo_tremolo].enabled == 1) 

    {  

    ucc_value =  GetLFOFreqEnvCCValue16(i,lfo_tremolo); 

    instance[i].lfo_env_current[lfo_tremolo].current_wt_inc_q11_5 = 

(uint16_t)(__builtin_muluu(channel.patch.lfo_envelope_config[lfo_tremolo].d

efault_wt_inc_q11_5,ucc_value)>>16); 

    } 

 

The user specified the MIDI Continuous Controller relating to the LFO frequency :  

Table : 
lfo_envelope_config 

Table :  
env_gain_CC 
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GetLFOFreqEnvCCValue16 returns : 

• 65535 if the controller is ‘None’ 

• The Velocity16 value (unsigned 16 bit) if the controller is set to Velocity. Note this is fixed at 
the start of a note being played, since it’s derived from the MIDI velocity. 

• Otherwise the current controller value (unsigned 16 bit) 

ucc_value is the current value of this ‘used’ continuous controller value. 

default_wt_inc_q11_5 is the default tremolo frequency, set by the user in the app. This value is 
actually the Wave Table Increment value corresponding to frequency. 

The new LFO frequency, current_wt_inc_q11_5, is calculated by scaling this value by ucc_value. i.e : 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑑𝑒𝑓𝑎𝑢𝑙𝑡 𝑥 (
𝑈𝐶𝐶𝑣𝑎𝑙𝑢𝑒

65536
) 

8.3.2 Tremolo LFO gain 

The Tremolo LFO oscillates at the calculated frequency. The magnitude of the LFO signal at any given 
time is controlled by a number of factors : 

• LFO envelope 

• LFO oscillator ‘signal’ (waveform and frequency) 

• Key scaling 

• Current MIDI controller value affecting LFO depth 

The LFO signal is termed a ‘gain’ signal because it is applied to the tone being produced by the Tone 
Processor.  

The lfo_env_current[lfo_tremolo].gain value is the ’current’,  instantaneous amplitude of the LFO at 
a moment in time, based on these factors. It is a signed 16-bit value that oscillates about zero with 
an amplitude that depends on the envelope. It is updated every 1ms in the method called  
process_1ms_event, which executes the following code : 

 

StepLFOEnvelope(&channel.patch.lfo_envelope_config[lfo_tremolo],&channel.pa

tch.adsr_section[a].adsr_section_envelope_config[env_tremolo],&instance[i].

lfo_env_current[lfo_tremolo],a,i); 

 

IEC0bits.T2IE = 0; 

 

(See Stage 1 below) 

instance[i].trem_offset_gain = 

(uint16_t)((int32_t)instance[i].lfo_env_current[lfo_tremolo].gain + 

((int32_t)(65535) - 

((int32_t)instance[i].lfo_env_current[lfo_tremolo].depth_env_value>>1)));                   

 

(See Stage 2 below) 
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instance[i].trem_offset_gain = 

(uint16_t)(__builtin_muluu(instance[i].trem_offset_gain,GetEnvCCValue16(i,e

nv_tremolo))>>16); 

 

(See Stage 3 below) 

instance[i].trem_offset_gain = 

(uint16_t)(__builtin_muluu(instance[i].trem_offset_gain,channel.volume)>>16

); 

 

IEC0bits.T2IE = 1; 

 

StepLFOEnvelope is a generic method that updates the lfo_env_current[lfo_tremolo].gain value. It 
also updates the current LFO envelope value, called depth_env_value (an unsigned 16-bit value 
between 0 and 65535). The gain value is scaled by the MIDI controller affecting LFO depth (if any). 

8.3.3 Tremolo LFO offset gain 

For the gain value to be useable, it needs to be offset to lie in a range of 0 to 65535. 
trem_offset_gain is the adjusted, unsigned 16-bit, gain value, and is calculated in 3 stages : 

Stage 1 : Simple level shift 

𝑇𝑟𝑒𝑚𝑜𝑙𝑜𝑂𝑓𝑓𝑠𝑒𝑡𝐺𝑎𝑖𝑛 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑟𝑒𝑚𝑜𝑙𝑜𝐺𝑎𝑖𝑛 + (65535 − (
𝐷𝑒𝑝𝑡ℎ𝐸𝑛𝑣𝑉𝑎𝑙𝑢𝑒

2
)) 

This translates the gain value from a signed to unsigned value, plus level shifts. 65535 -
(DepthEnvValue/2) is the amount to shift the level : 
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Stage 2 : Scale by Tremolo Depth Gain Controller value 

𝑇𝑟𝑒𝑚𝑜𝑙𝑜𝑂𝑓𝑓𝑠𝑒𝑡𝐺𝑎𝑖𝑛 = 𝑇𝑟𝑒𝑚𝑜𝑙𝑜𝑂𝑓𝑓𝑠𝑒𝑡𝐺𝑎𝑖𝑛 ∗ (
EnvCCValue16

65536
) 

GetEnvCCValue16 is a function that returns an unsigned 16-bit integer, for the ‘gain controller’ value 
(in the env_gain_cc table) relating to the Tremolo depth envelope : 

  

uint16_t GetEnvCCValue16(uint16_t i,uint16_t envelope_id) 

{ 

    uint16_t ucc_id = channel.patch.env_gain_CC[envelope_id]; 

    if(ucc_id == ucc_none) 

        {return 65535;} 

    else if(ucc_id == ucc_velocity) 

        {return instance[i].velocity16;} 

    else 

        {return channel.ucc_current_values[ucc_id];} 

} 

 

+ 32767 

 

 

 

 

-32768 

A    D               S              R 

          Time t  

Tremolo depth envelope (unsigned)   

DepthEnvValue/2 at time t    

 Time t  

   
Current gain at time t    
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65535 

  

  

  

  

0 

 Time t  
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65535 

  

  

  

0 
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 + 65535 

  

  

  

  

            0 
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blue arrow 

= 65535 – (DepthEnvValue/2)  

The offset gain signal always has 
it’s peak at a value of 65535.  

Scaled by  
LFO Depth CC 

Scaled by  
LFO Freq CC 

Scaled by  
LFO Envelope gain CC 
(BUT MAKES NO SENSE!) 
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NOTE: This controller makes no sense for Tremolo ! 

 

Stage 3 : Scale by the channel volume 

This last stage is not really related to tremolo, but is an intermediate step in the final calculation of 
the overall_gain value for the Tone Processor instance being played . It scales by the MIDI channel 
volume : 

𝑇𝑟𝑒𝑚𝑜𝑙𝑜𝑂𝑓𝑓𝑠𝑒𝑡𝐺𝑎𝑖𝑛 = 𝑇𝑟𝑒𝑚𝑜𝑙𝑜𝑂𝑓𝑓𝑠𝑒𝑡𝐺𝑎𝑖𝑛 ∗ (
ChannelVolume

65536
) 

 

This final trem_offset_gain value is used to scale the output signal in the core Tone Processor 
sample generation code (a method called UpdateSampleValue) : 

instance[i].overall_gain = 

__builtin_muluu(instance[i].trem_offset_gain,amplitude_depth_env_value)>>16

; 

 

8.4 Timbre LFO 

8.4.1 Timbre envelopes 

Unlike Tremolo and Vibrato, Timbre has two envelopes : 

 

• Env_timbre is displayed as ‘Timbre Morph’ and is used to Morph between waveforms in a 
Waveform Block. 

• Env_timbre_lfo is displayed a ‘Timbre lfo depth’ and as it’s name implies is used to vary the 
Timbre LFO depth. 

 

8.4.2 Timbre LFO frequency 

Just as for Tremolo, the frequency of the Timbre LFO is set by the user in the app and this frequency 
can also be changed by an associated MIDI controller. A Tone Processor updates this frequency 
every 10ms in process_10ms_event.  

 

ucc_value = GetLFOFreqEnvCCValue16(i,lfo_timbre); 

 

instance[i].lfo_env_current[lfo_timbre].current_wt_inc_q11_5 = 

(uint16_t)(__builtin_muluu(channel.patch.lfo_envelope_config[lfo_timbre].de

fault_wt_inc_q11_5,ucc_value)>>16); 
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8.4.3 Timbre LFO gain 

Again, just like Tremolo,  the magnitude of the Timbre LFO signal at any given time is controlled by a 
number of factors : 

• LFO envelope 

• LFO oscillator ‘signal’ (waveform and frequency) 

• Key scaling 

• Current MIDI controller value affecting LFO depth 

 

For the Timbre LFO, the gain and lfo_timbre_offset_gain  values are calculated every 10ms (not 
1ms) in the process_10ms_event method. The method of calculation is the same as for Tremolo, 
except there is only a single calculation stage for the offset gain : 
 

StepLFOEnvelope(&channel.patch.lfo_envelope_config[lfo_timbre],&channel.pat

ch.adsr_section[a].adsr_section_envelope_config[env_timbre_lfo],&instance[i

].lfo_env_current[lfo_timbre],a,i); 

 

IEC0bits.T2IE = 0; 

 

instance[i].lfo_timbre_offset_gain = 

(uint16_t)((int32_t)instance[i].lfo_env_current[lfo_timbre].gain + 

((int32_t)(65535) - 

((int32_t)instance[i].lfo_env_current[lfo_timbre].depth_env_value>>1)));  

                  

IEC0bits.T2IE = 1; 

 

8.4.4 Timbre LFO offset gain 

This final timbre_offset_gain value is used when the Wave Table is next recalculated, in the 
CalculateInstanceWavetable method : 

uint16_t timbre_gain = 

__builtin_muluu(instance[instance_id].lfo_timbre_offset_gain,instance[insta

nce_id].env_current[env_timbre].depth_env_value_scaled_by_CC)>>16; 

     

uint16_t w0 = timbre_gain >>14; 

uint16_t w1 = w0 + 1; 

uint16_t w = (uint16_t)((timbre_gain - (w0 << 14))>>6); //Range 0 to 255 

 

if(w > 128){w++;} 

uint16_t vw = 256 - w;  

The timbre_offset_gain value is first scaled by the ‘Timbre morph’ envelope depth 
value(depth_env_value_scaled_by_CC), which has been scaled by the ‘Gain controller’ associated 
with the Timbre Morph envelope (env_timbre). 

The waveforms to interpolate across (w0 and w1), are then calculated from this timbre_offset_gain 
value. 
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9 Performances and PatchSets 
The Module can store a number of instrument sounds, or 'patches' internally. It can also 

store configurations of 'performances' where multiple patches can be played in layers or 

splits across the keyboard. 

 

The way the performances are configured takes a bit of understanding, because of the 

physical limitations of the device. However the method used gives maximum flexibility which 

can be very useful.  

 

Although there can be many patches held in a Spectral App file, the module itself can only 

store a maximum of 18 patches. So there is a concept of 'PatchSets' that are collections of up 

to 18 patches. The module is loaded with a PatchSet.  

 

The patches on the module can further be used in 'Performances'. There can be a maximum 

of 8 performances saved to the module. A performance specifies which patches are used on 

MIDI channels 1 to 6, plus which channel each 'Tone Processor' chip on the module is 

assigned to : 

 

 

Figure 26: PatchSets and Performances 

There are 6 Tone Processor chips. Each chip can only be assigned to one MIDI channel. 

Therefore there is a maximum of 6 MIDI channels that can be used. 

 

An important point is that multiple Tone Processors can be assigned to the same MIDI 

channel.  This means that you can distribute the processing power as you see fit. As an 
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example, suppose you wanted to play a simple bass accompaniment in the left hand but 

piano chords in the right hand. The processing requirements of the bass are much less and 

so would need fewer processors.    

 

Patches and Performances are changed through MIDI Bank and Program Change 

messages. 

 

 

Figure 27: Patches in a PatchSet 

 

Figure 28: Performances in a PatchSet 

Each of 6 MIDI channels can be assigned a Patch, plus have an associated volume : 
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Figure 29: Channel patch allocation 

 

Each of the 6 'Tone Processors' on the module can be assigned to one of the 6 MIDI 

channels. Multiple processors can be assigned to the same MIDI channel : 

 

 

Figure 30: Processor Channel allocation 

When notes are played, the module receives the MIDI channel of the note and looks across 

all the Tone Processors that are associated with the channel, in order to work out which 

Processor should handle this 'Note Instance'. If all instances are used up then 'note-stealing' 

takes place, where the note in that channel that was played the earliest is dropped to make 

way for the new note. 

 

Since different channels can be used, the module does this calculation on each channel 

separately. Therefore some channels can be witnessing note-stealing and others not. 

 

Since there are 6 Tone Processors, then there can be a maximum of 6 different patches being 

played, across six MIDI channels. If this was the case then since each Tone Processor can 

handle a maximum of 3 Note Instances, then the system would be 3-note-polyphonic on 

each channel ! 

 

So although quite complex, this system is very flexible. 


