
CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM

Joppe Bos∗, Léo Ducas†, Eike Kiltz‡, Tancrède Lepoint§, Vadim Lyubashevsky¶,
John M. Schanck‖, Peter Schwabe∗∗, Gregor Seiler††, Damien Stehlé‡‡,

∗NXP Semiconductors, Belgium. Email: joppe.bos@nxp.com
†CWI Amsterdam, The Netherlands. Email: ducas@cwi.nl
‡Ruhr-University Bochum, Germany. Email: eike.kiltz@rub.de
§SRI International, USA. Email: tancrede.lepoint@sri.com

¶IBM Research Zurich, Switzerland. Email: vad@zurich.ibm.com
‖University of Waterloo, Canada. Email: jschanck@uwaterloo.ca

∗∗Radboud University, The Netherlands. Email: peter@cryptojedi.org
††IBM Research Zurich, Switzerland. Email: grs@zurich.ibm.com
‡‡ENS de Lyon, France. Email: damien.stehle@ens-lyon.fr

Abstract—Rapid advances in quantum computing, together
with the announcement by the National Institute of Standards
and Technology (NIST) to define new standards for digital-
signature, encryption, and key-establishment protocols, have
created significant interest in post-quantum cryptographic
schemes.

This paper introduces Kyber (part of CRYSTALS – Cryp-
tographic Suite for Algebraic Lattices – a package submitted
to NIST post-quantum standardization effort in November
2017), a portfolio of post-quantum cryptographic primitives
built around a key-encapsulation mechanism (KEM), based
on hardness assumptions over module lattices. Our KEM is
most naturally seen as a successor to the NEWHOPE KEM
(Usenix 2016). In particular, the key and ciphertext sizes of
our new construction are about half the size, the KEM offers
CCA instead of only passive security, the security is based on a
more general (and flexible) lattice problem, and our optimized
implementation results in essentially the same running time as
the aforementioned scheme.

We first introduce a CPA-secure public-key encryption
scheme, apply a variant of the Fujisaki–Okamoto transform
to create a CCA-secure KEM, and eventually construct, in
a black-box manner, CCA-secure encryption, key exchange,
and authenticated-key-exchange schemes. The security of our
primitives is based on the hardness of Module-LWE in the
classical and quantum random oracle models, and our concrete
parameters conservatively target more than 128 bits of post-
quantum security.

1. Introduction

There has been an increased interest in post-quantum
cryptographic schemes triggered by recent advances in quan-
tum computing [35] and the announcement by the National
Institute of Standards and Technology (NIST) to define
new standards for digital-signature, encryption, and key-

establishment protocols [28]. Constructions based on the
hardness of lattice problems are considered to be one of the
leading candidates to replace the currently used schemes
based on the believed hardness of the traditional number-
theoretic problems such as integer factorization and discrete
logarithms.

Lattice cryptography initially gained a lot of interest in
the theoretical community due to the fact that the designs for
cryptographic constructions were accompanied by security
proofs based on worst-case instances of lattice problems.
The first lattice-based encryption scheme was proposed by
Ajtai and Dwork [1]. This scheme was later simplified
and improved upon by Regev in [67], [68]. One of the
major achievements of Regev’s work was the introduction
of an intermediate problem – the Learning With Errors
(LWE) Problem – which was relatively simple to use in
cryptographic constructions and asymptotically at least as
hard as some standard worst-case lattice problems [61], [25].

The LWE assumption states that it is hard to distinguish
from uniform the distribution (A,As + e), where A is a
uniformly-random matrix in Zm×nq , s is a uniformly-random
vector in Znq , and e is a vector with random “small” coeffi-
cients chosen from some distribution. Applebaum et al. [6]
showed that the secret s in the LWE problem does not need
to be chosen uniformly at random: the problem remains hard
if s is chosen from the same narrow distribution as the errors
e. Based on the idea from the NTRU cryptosystem [43] of
working with elements over polynomial rings rather than
over the integers, and following a series of works on this
topic [58], [56], [63], [71], Lyubashevsky et al. [57] showed
that it is also hard to distinguish a variant of the LWE
distribution from the uniform one over certain polynomial
rings, thus defining the Ring-LWE assumption.

The combination of all of the above results finally led

mailto:joppe.bos@nxp.com
mailto:ducas@cwi.nl
mailto:eike.kiltz@rub.de
mailto:tancrede.lepoint@sri.com
mailto:vad@zurich.ibm.com
mailto:jschanck@uwaterloo.ca
mailto:peter@cryptojedi.org
mailto:grs@zurich.ibm.com
mailto:damien.stehle@ens-lyon.fr

to the cryptosystem in Section 3.1 Setting the parameter k
to 1 and defining Rq = Zq[X]/(Xn+1) makes the scheme
a Ring-LWE cryptosystem as originally defined in [57],
whereas setting the ring Rq to Zq, makes the scheme an
LWE-based one.2 If one sets the ring Rq to some polynomial
ring of dimension greater than 1 and sets k > 1, then the
scheme is based on the hardness of the Module-LWE prob-
lem [24], [54]. The number of bits that can be transmitted
is related to the dimension of the ring, thus using a ring
Rq of larger degree n allows one to transmit more bits, and
this is the main reason that Ring-LWE encryption is more
efficient than LWE encryption. On the other hand, having
a smaller k implies more algebraic structure, making the
scheme potentially susceptible to more avenues of attack.
Nevertheless, at this point in time, it is unknown how to
exploit the algebraic structure of Ring-LWE and concrete
parameters are chosen according to the corresponding LWE
problem of dimension k · n.

This cryptosystem design was also applied to build a
CPA-secure KEM by Ding et al. [36] and Peikert [62].
The main difference between this KEM and the encryption
scheme is in how the parameter v is defined in line 6 of
the encryption algorithm (Algorithm 2). The advantage of
the constructions in [36], [62] is that if one would like
to construct a CPA-secure KEM transmitting a b-bit key,
then the ciphertext is b bits shorter, which is about a 3%
savings for typical parameters.3 If one wishes to construct a
CCA-secure KEM, however, this advantage disappears since
typical transformations from CPA-secure KEMs to CCA-
secure ones implicitly go through a CPA-secure encryption
scheme, which will result in adding b bits to the KEM.
Since in this paper we are only concerned with CCA-secure
constructions, we find it simpler to start directly from the
CPA-secure encryption scheme design in Section 3.

The above designs based on Ring-LWE have resulted in
many recent concrete proposals accompanied by practical
implementations. The instantiation presented in [21] is based
on Ring-LWE and was subsequently improved in [4], [55],
which resulted in an experiment by Google where they used
this key-exchange protocol in their Chrome Canary browser
from July to November 2016 [23], [53]. Although the Ring-
LWE problem results in very practical key-sizes and proto-

1. It should be noted that this cryptoscheme design, as well as the result
from [6] applied to the Learning Parity with Noise (LPN) problem, was
already present much earlier in the work of Alekhnovich [3] in which he
constructed a cryptosystem based on the hardness of the LPN problem.
The LWE problem is a generalization of LPN and results in more efficient
cryptosystems.

2. The original cryptosystem was not optimized and did not include the
“bit-dropping” Compressq function in the key generation and encryption
algorithms; but this is considered folklore. Dropping bits to reduce ci-
phertext size in (Ring)-LWE cryptosystems was first (to our knowledge)
mentioned in [61] and subsequently used in a variety of concrete instan-
tiations of (Ring)-LWE cryptosystems and key exchange schemes derived
from [68] and [57] (c.f. [65], [4], [48], [5], [30]). Our Compressq function
uses the original definition from [61].

3. It was mentioned in [62, Sec. 4] that the ciphertext in the KEM
goes down by a factor of two compared to encryption schemes. However,
this applies only to the naive instantiations of encryption schemes where
the “bit-dropping” Compressq function is not applied to v in line 6 of
Algorithm 2.

col communication, the additional algebraic structure might
inspire less confidence in the underlying security. This was
the motivation to study a very similar practical instantiation
of a key-exchange protocol but based on LWE in [20], or to
propose an efficient implementation of a CCA-secure KEM
over a different ring [13].

1.1. Our contribution

Our main contribution is a highly-optimized instantiation
of a CCA-secure KEM called Kyber, which is based on
the hardness of Module-LWE.4 More precisely, we instanti-
ate a CPA-secure PKE scheme Kyber.CPA in Section 3,
then apply a variant of the Fujisaki–Okamoto transform
to create a CCA-Secure KEM Kyber in Section 4. The
security reduction from the CPA-secure scheme is tight in
the random-oracle model, but non-tight is the quantum-
random-oracle model [44]. From a CCA-secure KEM, one
can construct, in a black-box manner, CCA-secure en-
cryption (Kyber.Hybrid), key exchange (Kyber.KE), and
authenticated-key-exchange (Kyber.AKE) schemes. Our re-
sulting schemes are as efficient as ones that are based
on Ring-LWE, but have additional flexibility and security
advantages.

Flexibility. One of the most expensive operations in lattice-
based schemes over rings is polynomial multiplication. If a
scheme is based on the Ring-LWE assumption (i.e., with
k = 1 in Algorithm 2), then if one wants to vary the
security parameter related to the scheme, one would need
to change the ring Rq and re-implement all the ring op-
erations. With our design, where we only work over the
ring Rq = Z7681[X]/(X256 + 1), there is only one ring
over which operations need to be optimized. Increasing and
decreasing the security of the scheme can then be done
simply by changing the dimension k of the matrix. Our
proposed conservative parameters, which we believe have
very generous margins for 128-bit post-quantum security,
use k = 3. This is the scheme we recommend using for
long-term security. But if one only needs short-term security,
we believe that today (and probably for the near future)
one can safely use k = 2 for which we conservatively
estimate 102-bit post quantum security. This latter parameter
set will reduce the communication size of the key exchange
by around 33% and considerably speed up the scheme.
The main building blocks of the two schemes are exactly
the same, and any optimized software / hardware used for
efficient multiplication in Rq can be re-used.

Security. There have been recent attacks exploiting the
algebraic structure of cyclotomic ideal lattices [26], [17],
[32], [33], and others that exploit the presence of dense sub-
lattices in NTRU lattices [2], [50]. In these attacks, it appears
that the dimension of the module makes a big difference.
In particular, the quantum attacks on finding short vectors
in ideals currently do not extend to Ring-LWE [26], [17],

4. Our scheme is in fact an optimization that slightly deviates from the
Module-LWE assumption. We discuss this in Section 3.

[32], [33]. The obstacle seems to be that solutions to the
shortest vector problem in ideal lattices are ring elements,
whereas solutions to the Ring-LWE problem are elements
in a module of dimension 2. In that respect, solutions to
Module-LWE are in a module of dimension k+1. Similarly,
the larger module dimension also decreases the relative
dimension of the dense sub-lattice, making the attack of [50]
inapplicable. Based on the recent cryptanalytic progress, it
therefore seems that practical attacks are less likely to appear
against Module-LWE than against Ring-LWE or NTRU.

High performance. As we previously mentioned, the main
reason that Ring-LWE is preferred to LWE in practical
applications is because it allows for a larger message to be
transmitted in the same amount of communication. We show
that the flexibility and security improvements by moving
from Ring-LWE to Module-LWE come at almost no cost. In
particular, since public-key protocols only need to transmit
256 bits of information, it is unnecessary to work with rings
that are greater than dimension 256 in order to be able to
transmit one bit per coefficient of a ring element. Thus the
key and message sizes of our protocols versus those based
on Ring-LWE are not affected.

The one part where using a k > 1 is less efficient than
k = 1 is when dealing with the k × k random matrix A.
If one uses k = 1 and a ring of dimension n, then the
representation of A is k2n = n elements in Zq. On the
other hand, if one uses k = 3 and a ring of dimension n/3
(thus keeping the lattice-reduction security the same), then
A requires k2n = 3n elements in Zq to represent. Since
the matrix A is never stored, but rather expanded from
some seed ρ using an extendable output function (XOF),
this disadvantage only manifests in the slight increase in
the running time used in the expansion. This is to some
extent mitigated because the k2 entries of the matrix A
can be expanded independently, which enables very efficient
vectorization of the XOF computation.

Take away. In this paper, we propose and implement a
portfolio of post-quantum cryptographic primitives (CPA-
secure encryption, CCA-secure KEM, CCA-secure public-
key encryption, key exchange and authenticated key ex-
change) based on the hardness of Module-LWE in the
classical and quantum random-oracle models. Our schemes
are as efficient as the ones based on Ring-LWE, but also
feature flexibility and security advantages.

Availability of software. We place all software described in
this paper into the public domain to maximize reusability of
our results. It is available for download on GitHub: https:
//github.com/pq-crystals/kyber.

2. Preliminaries

All our algorithms are probabilistic. If b is a string, then
a ← A(b) denotes the output of algorithm A when run on
input b; if A is deterministic, then a is a fixed value and we
write a := A(b). We use the notation b := A(b; r) to make
the randomness r of a probabilistic algorithm A explicit.

2.1. Cryptographic definitions

A public-key encryption scheme PKE =
(KeyGen,Enc,Dec) is a triple of probabilistic algorithms
together with a message space M. The key-generation
algorithm KeyGen returns a pair (pk , sk) consisting of a
public key and a secret key. The encryption algorithm Enc
takes a public key pk and a message m ∈M to produce a
ciphertext c. Finally, the deterministic decryption algorithm
Dec takes a secret key sk and a ciphertext c, and outputs
either a message m ∈M or a special symbol ⊥ to indicate
rejection. Following [44], we say that PKE is (1−δ)-correct
if E[maxm∈M Pr[Dec(sk ,Enc(pk ,m)) = m]] ≥ 1 − δ,
where the expectation is taken over (pk , sk) ← KeyGen()
and the probability is taken over the random coins of Enc.

We recall the standard security notions for public-key en-
cryption of indistinguishability under chosen-ciphertext and
chosen-plaintext attacks (IND-CCA and IND-CPA) [66]. The
advantage of an adversary A is defined as Advcca

PKE(A) =∣∣∣∣∣∣∣∣ Pr

b = b′ :

(pk , sk)← KeyGen();
(m0,m1, s)← ADEC(·)(pk);
b← {0, 1}; c∗ ← Enc(pk ,mb);
b′ ← ADEC(·)(s, c∗)

− 1

2

∣∣∣∣∣∣∣∣ ,
where the decryption oracle is defined as DEC(·) :=
Dec(sk , ·). We further require that |m0| = |m1| and that in
the second phase A is not allowed to query DEC(·) with the
challenge ciphertext c∗. The advantage Advcpa

PKE(A) of an
adversary A is defined as Advcca

PKE(A), with the modification
that A cannot query the decryption oracle.

A key-encapsulation scheme KEM =
(KeyGen,Encaps,Decaps) is a triple of probabilistic
algorithms together with a key space K. The key-generation
algorithm KeyGen returns a pair (pk , sk) consisting of a
public key and a secret key. The encapsulation algorithm
Encaps takes a public key pk to produce a ciphertext c
and a key K ∈ K. Finally, the deterministic decapsulation
algorithm Decaps takes a secret key sk and a ciphertext c,
and outputs either a key K ∈ K or a special symbol ⊥ to
indicate rejection. We say that KEM is (1 − δ)-correct if
Pr[Decaps(sk , c) = K : (c,K) ← Encaps(pk)] ≥ 1 − δ,
where the probability is taken over (pk , sk) ← KeyGen()
and the random coins of Encaps.

We recall the standard security notion for key en-
capsulation of indistinguishability under chosen-ciphertext
attack. The advantage of an adversary A is defined as
Advcca

KEM(A) =∣∣∣∣∣∣∣∣∣ Pr

b = b′ :

(pk , sk)← KeyGen();
b← {0, 1};
(c∗,K∗0)← Encaps(pk);
K∗1 ← K;
b′ ← ADECAPS(·)(pk , c∗,K∗b)

− 1

2

∣∣∣∣∣∣∣∣∣ ,
where the DECAPS oracle is defined as DECAPS(·) :=
Decaps(sk , ·). We further require that A is not allowed to
query DECAPS(·) with the challenge ciphertext c∗.

In the random oracle model [11], the adversary A is
additionally given access to a random oracle that it can

https://github.com/pq-crystals/kyber
https://github.com/pq-crystals/kyber

query up to qH times. If the adversary has access to
a quantum computer, it is realistic to model its access
to all “offline primitives” (such as hash functions) in a
quantum setting. Concretely, in the quantum random oracle
model [19] the adversary has access to a quantum random
oracle (also called quantum accessible random oracle) that
can be queried up to qH times on arbitrary quantum super-
positions of input strings.

2.2. Rings and distributions

Let R and Rq denote the rings Z[X]/(Xn + 1) and
Zq[X]/(Xn + 1), respectively, where n = 2n

′−1 such that
Xn + 1 is the 2n

′
-th cyclotomic polynomial. Throughout

this paper, the values of n, n′ and q are 256, 9 and 7681,
respectively. Regular font letters denote elements in R or Rq
(which includes elements in Z and Zq) and bold lower-case
letters represent vectors with coefficients in R or Rq. By
default, all vectors will be column vectors. Bold upper-case
letters are matrices. For a vector v (or matrix A), we denote
by vT (or AT) its transpose.

Modular reductions. For an even (resp. odd) positive inte-
ger α, we define r′ = r mod± α to be the unique element
r′ in the range −α2 < r′ ≤ α

2 (resp. −α−12 ≤ r′ ≤ α−1
2)

such that r′ = r mod α. For any positive integer α, we
define r′ = r mod+ α to be the unique element r′ in the
range 0 ≤ r′ < α such that r′ = r mod α. When the exact
representation is not important, we simply write r mod α.

Rounding. For an element x ∈ Q we denote by dxc
rounding of x to the closest integer with ties being rounded
up.

Sizes of elements. For an element w ∈ Zq, we write ‖w‖∞
to mean |w mod± q|. We now define the `∞ and `2 norms
for w = w0 + w1X + . . .+ wn−1X

n−1 ∈ R:

‖w‖∞ = max
i
‖wi‖∞, ‖w‖ =

√
‖w0‖2∞ + . . .+ ‖wn−1‖2∞.

Similarly, for w = (w1, . . . , wk) ∈ Rk, we define

‖w‖∞ = max
i
‖wi‖∞, ‖w‖ =

√
‖w1‖2 + . . .+ ‖wk‖2.

Distributions. For a set S, we write s← S to denote that s
is chosen uniformly at random from S. If S is a probability
distribution, then this denotes that s is chosen according to
the distribution S.

Extendable output function. Suppose that Sam is an ex-
tendable output function, that is a function on bit strings in
which the output can be extended to any desired length. If
we would like Sam to take as input x and then produce a
value y that is distributed according to distribution S (or
uniformly over a set S), we write y ∼ S := Sam(x).
It is important to note that this procedure is completely
deterministic: a given x will always produce the same y. For
simplicity we assume that the output distribution of Sam is
perfect, whereas in practice Sam will be implemented using

random oracles and produces an output that is statistically
close to the perfect distribution.

Binomial distribution. We define the centered binomial
distribution Bη for some positive integer η as follows:

Sample {(ai, bi)}ηi=1 ← ({0, 1}2)η and output
η∑
i=1

(ai−bi).

If v is an element of R, we write v ← βη to mean that
v ∈ R is generated from a distribution where each of its
coefficients is generated according to Bη. Similarly, a k-
dimensional vector of polynomials v ∈ Rk can be generated
according to the distribution βkη .

Compression and Decompression. We now define a func-
tion Compressq(x, d) that takes an element x ∈ Zq and
outputs an integer in {0, . . . , 2d− 1}, where d < dlog2(q)e.
We furthermore define a function Decompressq, such that

x′ = Decompressq
(
Compressq(x, d), d

)
(1)

is an element close to x – more specifically

|x′ − x mod± q| ≤ Bq :=
⌈ q

2d+1

⌋
.

The functions satisfying these requirements are defined as:

Compressq(x, d) = d(2d/q) · xc mod+ 2d ,

Decompressq(x, d) = d(q/2d) · xc .

If x′ is a function of x as in Eq. (1), then for a randomly
chosen x← Zq, the distribution of

x′ − x mod± q

is almost uniform over the integers of magnitude at most Bq.
In particular, this distribution has equal weight over integers
of magnitude at most Bq − 1 and has a smaller weight on
the integer(s) of magnitude Bq.

When Compressq or Decompressq is used with x ∈ Rq
or x ∈ Rkq , the procedure is applied to each coefficient
individually.

The main reason for defining the Compressq and
Decompressq functions is to be able to discard some low-
order bits in the public key and the ciphertext which do not
have much effect on the correctness probability of decryp-
tion – thus making the parameters smaller. The Compressq
function is also used in one other place where its intuitive
purpose is not to “compress”. In line 3 of the decryption
procedure (Algorithm 3), the function is used to decrypt to
a 1 if v − sTu is closer to dq/2c than to 0, and decrypt to
a 0 otherwise.

2.3. Module-LWE

Let k be a positive integer parameter. The hard problem
underlying the security of our schemes is Module-LWE.
It consists in distinguishing uniform samples (ai, bi) ←
Rkq ×Rq from samples (ai, bi) ∈ Rkq ×Rq where ai ← Rkq
is uniform and bi = aTi s + ei with s ← βkη common to

all samples and ei ← βη fresh for every sample.5 More
precisely, for an algorithm A, we define Advmlwe

m,k,η(A) =∣∣∣∣Pr [b′ = 1 :
A← Rm×kq ; (s, e)← βkη × βmη ;
b = As+ e; b′ ← A(A,b)

]
− Pr

[
b′ = 1 : A← Rm×kq ;b← Rmq ; b′ ← A(A,b)

]∣∣ .
3. Kyber’s IND-CPA-secure encryption

Let k, dt, du, dv be positive integer parameters, and
recall that n = 256. Let M = {0, 1}256 denote the
message space, where every message m ∈ M can be
viewed as a polynomial in R with coefficients in {0, 1}.
Consider the public-key encryption scheme Kyber.CPA =
(KeyGen,Enc,Dec) as described in Algorithms 1 to 3. Note
that cipheretxts are of the form (u, v) ∈ {0, 1}256·kdu ×
{0, 1}256·dv .

Algorithm 1 Kyber.CPA.KeyGen(): key generation
1: ρ, σ ← {0, 1}256
2: A ∼ Rk×kq := Sam(ρ)
3: (s, e) ∼ βkη × βkη := Sam(σ)
4: t := Compressq(As+ e, dt)
5: return (pk := (t, ρ), sk := s)

Algorithm 2 Kyber.CPA.Enc(pk = (t, ρ),m ∈ M): en-
cryption

1: r ← {0, 1}256
2: t := Decompressq(t, dt)
3: A ∼ Rk×kq := Sam(ρ)
4: (r, e1, e2) ∼ βkη × βkη × βη := Sam(r)
5: u := Compressq(A

T r+ e1, du)
6: v := Compressq

(
tT r+ e2 +

⌈
q
2

⌋
·m, dv

)
7: return c := (u, v)

Algorithm 3 Kyber.CPA.Dec(sk = s, c = (u, v)): decryp-
tion

1: u := Decompressq(u, du)
2: v := Decompressq(v, dv)
3: return Compressq(v − sTu, 1)

Correctness. We show below the correctness of the en-
cryption scheme described in Algorithms 1 to 3. We will
select parameters in Section 6 to make the decryption error
negligible, i.e., so that Kyber.CPA is (1 − δ)-correct with
δ < 2−128.

5. While the exact distribution shape does not seem to play any role in
the hardness of (Module)-LWE encryption schemes, we mention that it is
possible to show with a simple Rényi divergence-based analysis a la [9],
[4] that one can substitute βη with the n-dimensional rounded Gaussian
distribution of standard deviation

√
η/2, which was the one considered

in [54].

Theorem 1. Let k be a positive integer parameter. Let
s, e, r, e1, e2 be random variables that have the same distri-
bution as in Algorithms 1 and 2. Also, let ct ← ψkdt , cu ←
ψkdu , cv ← ψdv be distributed according to the distribution
ψ defined as follows:
Let ψkd be the following distribution over
R:

1: Choose uniformly-random y← Rk

2: return
(
y−Decompressq

(
Compressq(y, d), d

))
mod± q.

Denote

δ = Pr
[∥∥eT r+ e2 + cv − sTe1 + cTt r− sT cu

∥∥
∞ ≥ dq/4c

]
.

Then Kyber.CPA is (1− δ)-correct.

Remark 1. We provide with our software a Python script
that allows to compute a tight upper bound on δ; the
parameter set we recommend for Kyber in Table 1 yields
δ = 2−142.

Proof. The value of t in line 6 of Algorithm 2 is:

t = Decompressq
(
Compressq(As+ e, dt), dt

)
= As+e+ct,

for some ct ∈ Rk. The value of u in Algorithm 3 is

u = Decompressq
(
Compressq(A

T r+ e1, du), du
)

= AT r+ e1 + cu,

for some cu ∈ Rk. And the value of v is

v = Decompressq
(
Compressq(t

T r+ e2 + dq/2c ·m, dv), dv
)

= tT r+ e2 + dq/2c ·m+ cv

= (As+ e+ ct)
T r+ e2 + dq/2c ·m+ cv

= (As+ e)T r+ e2 + dq/2c ·m+ cv + cTt r,

for some cv ∈ R. In all of the above, we can safely
assume that the values ct, cu, and cv are distributed ac-
cording to the distribution ψ defined in the theorem state-
ment. The reason is that all of these are of the form(
y − Decompressq

(
Compressq(y, d), d

))
mod± q where y

is pseudo-random based on the hardness of Module-LWE.
Using the above, we obtain

v − sTu = eT r+ e2 + dq/2c ·m
+ cv + cTt r− sTe1 − sT cu

If
∥∥eT r+ e2 + cv + cTt r− sTe1 − sT cu

∥∥
∞ < dq/4c, then

we can write v−sTu = w+dq/2c·m where ‖w‖∞ < dq/4c.
Define m′ = Compressq(v − sTu, 1). We then know that

dq/4c ≥ ‖v − sTu− dq/2c ·m′‖∞
= ‖w + dq/2c ·m− dq/2c ·m′‖∞.

By the triangle inequality and the fact that ‖w‖∞ <
dq/4c, we obtain

‖dq/2c · (m−m′)‖∞ < 2 · dq/4c,

which (for all odd q) implies that m = m′, and proves the
correctness of Kyber.CPA.

Security of a modified scheme. We will prove that the
encryption scheme defined above without compressing t in
Line 4 of Algorithm 1 and without Line 2 in Algorithm 2
(called Kyber.CPA′) is IND-CPA secure under the Module-
LWE hardness assumption.

Theorem 2. For any adversary A, there exists an adversary
B such that Advcpa

Kyber.CPA′(A) ≤ 2 ·Advmlwe
k+1,k,η(B).

Proof. Let A be an adversary that is executed in the IND-
CPA security experiment which we call game G0, i.e.,
Advcpa

Kyber.CPA′(A) = |Pr[b = b′ in game G0] − 1/2|.
In game G1, the value t′ := As + e which is used
in KeyGen is substituted by a uniform random value.
It is possible to verify that there exists an adversary
B with the same running time as that of A such that
|Pr[b = b′ in game G0] − |Pr[b = b′ in game G1]| ≤
Advmlwe

k,k,η(B) ≤ Advmlwe
k+1,k,η(B). In game G2, the values

u′ := AT r+ e1 and v′ := tT r+ e2 used in the generation
of the challenge ciphertext are simultaneously substituted
with uniform random values. Again, there exists an ad-
versary B with the same running time as that of A with
|Pr[b = b′ in game G1] − |Pr[b = b′ in game G2]| ≤
Advmlwe

k+1,k,η(B). Note that in game G2, the value v from
the challenge ciphertext is independent of bit b and therefore
Pr[b = b′ in game G2] = 1/2. Collecting the probabilities
yields the required bound.

Security of the real scheme. In the real scheme, t :=
Decompressq

(
Compressq(t, du), du

)
in Line 2 of Algo-

rithm 2 is no longer uniform in Rkq , and so one cannot
conclude that the distribution (AT r + e1, t

T r + e2), for
r, e1 ∼ βkη and e2 ∼ βη is indistinguishable from uniform
based on the hardness of the Module-LWE problem. One
way to fix this issue is for the encryptor to add a small
random (possibly even public) noise e′ ∈ Rk to t such that
t + e′ is uniformly random in Rkq . The distribution of this
noise would have to depend on t and du. For our value of
du = 11, this would involve selecting the coefficients of
e′ from the set {−1, 0, 1, 2} with a probability distribution
that depends on t.6 To achieve the same distribution more
easily, one could instead define the Compressq function as
truncating the last 2 bits, and the Decompressq function
as a multiplication by 4. Then the coefficients of e′ can
be chosen uniformly at random from {0, 1, 2, 3}. The main
disadvantage of adding the extra e′ is that the term e′T r
will appear in the decryption and will add to the decryption
error. For the recommended parameters (see Table 1), the
decryption error will increase from 2−142 to 2−121.

Due to the increase in the decryption error and the
cumbersome nature of adding the extra error term, we
choose to define Kyber to include the compression of the
public key t but not add any noise. There are several reasons
why we strongly believe that this choice does not affect
security. First, note that in the encryption Algorithm 2, the
decompressed value of t is used in Line 6 and is compressed

6. We thank Jan-Pieter D’Anvers for these observations.

with dv = 3 (see Table 1 and Table 2). This means that
only approximately the highest 3 bits of tT r+ e2+

⌈
q
2

⌋
·m

are output per coefficient. In particular, if the modulus q
is large enough, then the two distributions are statistically
close because

Compressq

(
(t+ e′)T r+ e2 +

⌈q
2

⌋
·m, dv

)
= Compressq

(
tT r+ e2 +

⌈q
2

⌋
·m, dv

)
,

where e′ is chosen so as to make t+e′ uniform as discussed
above. This is exactly the same relationship that exists
between the Module-LWE and Module-LWR problems.7 For
certain parameters, the two problems are equivalent (see [18]
for the most “liberal” reduction between the two), yet for
ones used in practice (c.f. [10] and many submissions to
the NIST post-quantum call), it is still assumed that the
distribution of Module-LWR is pseudorandom despite the
fact that the proof in [18] is no longer applicable.

Additionally, our proposal for the KEM is the CCA-
transformation in Algorithm 4 which does not even require
that the output of the CPA-secure scheme be pseudo-random
since the shared key is formed by using the message m
inside a random oracle. Because the entropy of r is larger
than the entropy of v (by a factor larger than 2.5), it implies
that it is not enough to only look at the v term to recover
m (or perhaps to even distinguish it from uniform), but
one must also somehow use the “properly formed” Module-
LWE component u at the same time. We believe that it is
extremely unlikely that anything about the message m can
be recovered from this information assuming that Module-
LWE is hard.

4. The CCA-secure KEM

Let G : {0, 1}∗ → {0, 1}2×256 and H : {0, 1}∗ →
{0, 1}256 be hash functions. Consider the public-key key en-
capsulation mechanism Kyber = (KeyGen,Encaps,Decaps)
as described in Algorithms 1, 4 and 5, where KeyGen
is the same as the one of Kyber.CPA from the previous
section, with the difference that sk also contains pk = (t, ρ)
and a secret 256-bit random value z. It is obtained by
applying a KEM variant with “implicit rejection” [44] of
the Fujisaki–Okamoto transform [38] to the Kyber.CPA en-
cryption scheme. Note that we make explicit the randomness
r in the Enc algorithm.

We stress that Kyber.Decaps never returns ⊥. Instead,
in case re-encryption fails, it returns a pseudo-random key
K := H(z, c), where z is a random, secret seed.

Correctness. If Kyber.CPA is (1 − δ)-correct and G is a
random oracle, then Kyber is (1− δ)-correct [44].

Security. The following concrete security statement proves
Kyber’s CCA-security when the hash functions G and H are

7. The Module-LWR (Learning with Rounding) problem outputs
(A,Compressq(As, d)) for A← Rm×kq , s← βkη and asks to distinguish
this distribution from (A,Compressq(b, d)) for b← Rmq .

Algorithm 4 Kyber.Encaps(pk = (t, ρ))

1: m← {0, 1}256
2: (K̂, r) := G(H(pk),m)
3: (u, v) := Kyber.CPA.Enc ((t, ρ),m; r)
4: c := (u, v)
5: K := H(K̂,H(c))
6: return (c,K)

Algorithm 5 Kyber.Decaps(sk = (s, z, t, ρ), c = (u, v))

1: m′ := Kyber.CPA.Dec(s, (u, v))
2: (K̂ ′, r′) := G(H(pk),m′)
3: (u′, v′) := Kyber.CPA.Enc ((t, ρ),m′; r′)
4: if (u′, v′) = (u, v) then
5: return K := H(K̂ ′,H(c))
6: else
7: return K := H(z,H(c))
8: end if

modeled as random oracles. We provide the concrete secu-
rity bounds from [44] which considers the KEM variant of
the FO transformation and also takes a non-zero correctness
error δ into account.

Theorem 3. For any classical adversary A that makes at
most qRO many queries to random oracles H and G, and qD
queries to the decryption oracle, there exists an adversary
B such that

Advcca
Kyber(A) ≤ 3Advcpa

Kyber.CPA(B) + qRO · δ +
3qRO

2256
.

We remark that there exists an alternative security
reduction from the weaker notion of ONE-WAY CPA-
security [44] of Kyber.CPA which is, however, not tight
as it loses a multiplicative factor qRO .

As for security in the quantum random oracle model
(QROM), [69] can be used to prove that Kyber is IND-
CCA secure in the QROM, provided that Kyber.CPA is
ONE-WAY CPA secure and sparse pseudo-random. Sparse
pseudo-randomness [69] is a slightly stronger security no-
tation than IND-CPA security and essentially states that (i)
a properly generated ciphertext is pseudo-random (i.e., it
is computationally indistinguishable from a random high-
entropy bit-string) and that (ii) a random bit-string is, with
high probability, not a properly generated ciphertext. The
proof of Theorem 2 shows that Kyber.CPA′ (i.e., Kyber.CPA
without compressing t) is tightly pseudo-random under the
Module-LWE hardness assumption. Concretely, the pseudo-
randomness advantage is bounded by Advpr

Kyber.CPA′(A) ≤
2 · Advmlwe

k+1,k,η(B). One can argue again that the same
bound holds for Kyber.CPA. The sparseness property is
trivially fulfilled for Kyber.CPA since the set of properly
generated ciphertexts is a sparse subset of the ciphertext
space {0, 1}256(kdu) × {0, 1}dv .

One can use [69] (in a combination with [45] to account
for the correctness error δ) to obtain the following concrete
statement in the QROM.

Theorem 4. For any quantum adversary A that makes at
most qRO many queries to quantum random oracles H and
G, and at most qD many (classical) queries to the decryption
oracle, there exists a quantum adversary B such that

Advcca
Kyber(A) ≤ 8q2RO · δ + 4qRO ·

√
Advpr

Kyber.CPA(B).

Unfortunately, the above security bound is non-tight
and therefore can only serve as an asymptotic indication
of Kyber’s CCA-security in the quantum random oracle
model. We can use [69] to derive a tight security bound
in the QROM from a non-standard security assumption,
namely that a deterministic version of Kyber.CPA is sparse
pseudo-random in the QROM. Deterministic Kyber.CPA
is defined as Kyber.CPA, but the randomness r used in
encryption is derived deterministically from the message m
via r := G(m). In the classical ROM this assumption is
tightly implied by the IND-CPA security of Kyber.CPA but
in the QROM the reduction is non-tight (and is the reason
for the term qRO ·

√
Advpr

Kyber.CPA(B) in Theorem 4).

Hashing pk into K̂. The Kyber CCA transform is essen-
tially the transform from [72], [44], with one small tweak:
we hash the public key pk (or more precisely H(pk)) into
K̂. This tweak has two effects. First, it makes the KEM
contributory; the shared key K does not depend only on
input of one of the two parties. The second effect is a multi-
target protection. Consider an attacker who searches through
many values m to find one that is “likely” to produce a
failure during decryption. Such a decryption failure of a
legitimate ciphertext would leak some information about the
secret key. In the pre-quantum setting this attack approach
is doomed because of the negligible failure probability δ.
In a post-quantum setting, the attacker could use Grover’s
algorithm to search for such an m. However, the attacker
is then facing the problem to encode “likely to produce a
decryption failure” in the Grover oracle. This is equivalent
to identifying noise vectors that are likely to have a large
inner product with (s, e); probably the best strategy is to
search for m that produce noise vectors of large norm. Even
though we believe this attack approach is unlikely to result
in any better performance than a brute-force Grover search
of the 256-bit shared key K, hashing pk into K̂ ensures that
an attacker would not be able to use precomputed values m
against multiple targets.

Supporting non-incremental hash APIs. One might won-
der why we use H(pk) instead of pk as input to G when
computing K̂ and why we use H(c) instead of c as input
to H when computing K. The reason is that this simplifies
implementation with non-incremental hash APIs, such as the
ones used in the SUPERCOP benchmarking framework [14]
and the Networking and Cryptography library (NaCl) [15].
Furthermore using H(pk) instead of pk as input to G enables
a small speedup for decapsulation at the cost of a slightly
increased secret-key size as explained in the Section 7.

CCA-secure public-key encryption. We remark that a
CCA-secure public-key encryption scheme can be obtained

by combining the CCA-secure KEM Kyber with any CCA-
secure symmetric encryption scheme [34] (aka. DEM).
We describe the resulting hybrid encryption scheme
Kyber.Hybrid in Appendix A.

5. Key Exchange Protocols

Let Kyber = (KeyGen,Encaps,Decaps) be the IND-
CCA secure KEM from the previous section. Figure 1 de-
scribes the Kyber key exchange protocol Kyber.KE obtained
as a direct application of the key encapsulation mechanism.
In key exchange constructions using a KEM, it is common
to hash the “view” of each participant (i.e., all received and
sent messages) into the final key. In Kyber, the public key
pk is hashed into the “pre-key” K̂ and the ciphertext is
hashed into the final key K; hence the shared key obtained
in a key exchange already includes the complete “view” of
each participant.

P1 P2

(pk , sk)← Kyber.KeyGen() pk

(c,K)← Kyber.Encaps(pk)

ckey := Kyber.Decaps(sk , c) key := K

Figure 1. Kyber.KE – Key Exchange protocol using the Kyber =
(KeyGen,Encaps,Decaps) key encapsulation mechanism.

Authenticated key exchanges protocols. Note that the
protocol of Fig. 1 by itself only provides security against
passive adversaries (and in particular fails to protect against
man-in-the-middle attacks). Let H : {0, 1}∗ → {0, 1}256 be
a hash function. Figure 2 describes our one-sided (unilateral)
authenticated key exchange protocol Kyber.UAKE in which
party P1 knows the static (long-term) key of party P2, and
Fig. 3 describes our authenticated key-exchange protocol
Kyber.AKE where each party knows the static (long-term)
key of the other party.

The shared key derived at the end of the above protocols
not only depends on the ephemeral key and ciphertext
(pk , c), but also on the static (long-term) keys pk i and as-
sociated ephemeral ciphertexts ci (where i = 2 and i = 1, 2
respectively).

Our authenticated key-exchange protocols follow a
generic construction from any CCA-secure encryption
scheme. Concretely, security of Kyber.AKE in the Canetti–
Krawczyk model with weak forward secrecy [27] follows
directly from the generic security bounds of [22], [37]. (Note
that full forward secrecy is not achievable for a two-round
authenticated key-exchange protocol [27].)

6. Parameters and Security Analysis

In this section we give the Kyber parameter set that aims
at 128 bits of post-quantum (and classical) security, with

P1 P2
Static keys

(pk2, sk2)← Kyber.KeyGen()

pk2 public auth. key
sk2 secret auth. key

(pk , sk)← Kyber.KeyGen()
(c2,K2)← Kyber.Encaps(pk2)

pk , c2
(c,K)← Kyber.Encaps(pk)
K′2 := Kyber.Decaps(sk2, c2)

c
K′ := Kyber.Decaps(sk , c)

key := H(K′,K2) key := H(K,K′2)

Figure 2. Kyber.UAKE – One-sided authenticated key exchange protocol
using Kyber, where P1 knows the static public key of P2.

P1 P2
Static keys

(pk1, sk1)← Kyber.KeyGen() (pk2, sk2)← Kyber.KeyGen()

pk1 public auth. key
sk1 secret auth. key

pk2 public auth. key
sk2 secret auth. key

(pk , sk)← Kyber.KeyGen()
(c2,K2)← Kyber.Encaps(pk2)

pk , c2
(c,K)← Kyber.Encaps(pk)
(c1,K1)← Kyber.Encaps(pk1)
K′2 := Kyber.Decaps(sk2, c2)

c, c1
K′ := Kyber.Decaps(sk , c)

K′1 := Kyber.Decaps(sk1, c1)

key := H(K′,K′1,K2) key := H(K,K1,K′2)

Figure 3. Kyber.AKE – Authenticated key exchange protocol using Kyber,
where both parties know each other’s static public keys.

a generous security margin to account for future improve-
ments in cryptanalysis. We only consider the parameters that
are relevant to the underlying lattice problem; instantiations
of symmetric primitives are given in Section 7.

The parameters of Kyber are summarized in Table 1.
The first parameter we fixed was n = 256, which stems
from the fact that we want to encapsulate 256 bits of entropy
(targeting a 128-bit security level for symmetric keys [40])
and that we want to encode each of these bits into one

TABLE 1. KYBER PARAMETER SET, AIMING AT 128-BIT CLASSICAL
AND POST-QUANTUM SECURITY, WITH GENEROUS MARGINS.

n k q η (du, dv , dt) δ pq-sec

Kyber 256 3 7681 4 (11, 3, 11) 2−142 161

polynomial coefficient. We then picked q = 7681 as the
smallest prime that fulfills q ≡ 1 mod 2n, which allows
us to use fast multiplication in Rq based on the negacyclic
number-theoretic transform (NTT). The next parameter we
fixed is k = 3, which controls the dimension of the lattice,
and thereby largely the security. Finally we tuned the param-
eters η, du, dv, and dt to balance security, failure probability
δ, public-key size, and ciphertext size. We decided to fix
du = dt = 11, which unifies compression of public keys
and the “key component” u of the ciphertext.

Core-SVP hardness. To analyze the security of Kyber,
we follow the methodology introduced in [4, Sec. 6.1].
This means that we assume that the best way to solve the
Module-LWE problem underlying Kyber is to treat it as a
general LWE problem. Moreover we consider the primal
and dual attacks to be the only known attacks relevant
to our parameter sets. After optimizing the parameters for
the primal attack with respect to the success criteria of [4,
Sec. 6.3], we find that the attack would invoke BKZ with
blocksize 610 to 615 (depending on whether one uses the
primal or dual attack). The cost of BKZ with blocksize 610
is dominated by a polynomial number of calls to a dimension
610 SVP solver. Suppressing this polynomial number of
SVP calls and all subexponential factors in the cost of the
best known quantum algorithm for SVP [51, Sec. 14.2.10],
this implies a cost of > 2161 operations in the quantum
RAM model. According to this very conservative analysis,
Kyber offers 161 bits of security against the best known
quantum attacks targeting the underlying lattice problem.

Resistance to hybrid attacks. Several schemes [13], [42]
are potentially vulnerable to a hybrid attack [46], [39],
mixing lattice reduction techniques with Meet-in-the-Middle
combinatorial search. This attack is particularly difficult to
analyze, and recent work [73] suggests that it is often not as
competitive as previously thought. We note that this attack
is especially relevant when secrets and errors are ternary and
sparse, which is not the case for our design.

Algebraic attacks. The main novelty of our design is in
the use of Module-LWE rather than Ring-LWE. One of the
motivations for this change is to move further away from
the recently uncovered weaknesses of ideal lattices [26],
[17], [32], [33] – yet without the cost of using completely
unstructured LWE. The work of [33] mentions obstacles
towards a quantum attack on Ring-LWE from their new
techniques, but nevertheless suggests using Module-LWE,
as it plausibly creates even more obstacles.

Scaling security and performance. A particularly attrac-
tive feature of Module-LWE (as compared to LWE or
Ring-LWE) is, that scaling security only needs marginal
changes to existing, possibly highly optimized implementa-
tions. Specifically, the only parameters that need to change
to scale security (and performance) of Kyber, are k and
η; note that optimized code for polynomial arithmetic is
not affected by changing those parameters. Table 2 lists
one “paranoid” parameter set aiming at security similar to
NEWHOPE (using dimension n · k = 1024) and one “light”

parameter set that might become interesting for the 96-bit
security level, or, with a tighter security analysis for the 128-
bit security level, if continued effort in cryptanalysis does
not produce significantly better attacks.

The Core-SVP hardness analysis against the best known
quantum attacks yields 218 bits of security for the paranoid
parameter set and 102 bits of security for the light parameter
set.

A note on passively secure KEMs. We note that in order
to support the CCA transformation, we need a negligible
(in the cryptographic sense) failure probability. Previous
proposals like NEWHOPE [4] or FRODO [20] are designed to
only achieve passive security and can live with much higher
failure probabilities (≈ 2−60 for NEWHOPE and 2−38.9 for
the recommended parameter set of FRODO). If one were
to optimize a passively secure KEM from Module-LWE,
one could reduce the rounding parameters du and dt to
du = dt = 10 to further reduce public-key size (to 992
bytes) and ciphertext size (to 1088 bytes) while increasing
the failure probability (to 2−71.9).

7. Implementation

In this section we give all the remaining details of our
implementations of Kyber and report on performance of
subroutines. An even more detailed description is given
in the specification of Kyber submitted to NIST [8]. Both
implementations are fully protected against timing attacks.
All cycle counts in this section were obtained on one core of
an Intel Core-i7 4770K (Haswell) with hyperthreading and
TurboBoost turned off running at 3.5GHz. They are median
cycle counts over 1000 measurements.

7.1. Primitives and encodings

Sections 3 and 4 introduce Kyber in abstract terms
without fixing concrete instantiations of the functions H, G,
and Sam, and without fixing encodings of messages. This
subsection details concrete instantiations of these building
blocks.

Symmetric primitives. The main symmetric building
blocks are the two hash functions H and G, a function that
accepts as input the public seed ρ and generates the uniform
matrix A ∈ Rk×kq , and a function that accepts as input
a secret seed r and generates as output noise polynomials
sampled from βη. Note that in passively secure KEMs like
BCNS [21], NEWHOPE [4], or FRODO [20], the choice
of how noise polynomials are sampled is a local decision:
implementations on different platforms can choose whatever
PRNG is the best option on the respective platform. This is
also true for noise generation in Kyber’s key generation, but,
because of the CCA transform, is no longer true for noise
generation in encapsulation.

We decided to instantiate all hash functions with func-
tions derived from Keccak as standardized in FIPS 202 [60].
Specifically, to generate the matrix A we use SHAKE-
128; to generate noise polynomials we use SHAKE-256;

TABLE 2. ALTERNATIVE PARAMETER SETS FOR HIGHER AND LOWER SECURITY LEVELS.

n k q η (du, dv , dt) δ pq sec. |pk | in bytes |c| in bytes

Paranoid 256 4 7681 3 (11, 3, 11) 2−169 218 1 440 1 536
Light 256 2 7681 5 (11, 3, 11) 2−145 102 736 832

and we instantiate H with SHA3-256 and G wit SHA3-512.
With this choice, all symmetric primitives in Kyber rely on
the same underlying primitive, namely the Keccak-f1600
permutation. The only exception is that for key generation,
different implementations are free to use whatever PRNG is
offering the best performance and security on their respec-
tive platform.

We are aware that another choice of symmetric prim-
itives would yield somewhat better performance on most
platforms. For example, we could have decided to use
SHA256 for all hashes (with output extension for G via
MGF1; see [59, App. B.2.1]), and AES in counter mode
for the expansion of seeds. This choice would certainly
be faster on platforms with hardware AES and SHA256
support. However, on platforms without hardware support,
AES implementations are notorious for timing-attack vul-
nerabilities. Furthermore, as pointed out in [4, Sec. 3], the
use of a PRG (which AES in counter mode is), is not helpful
to argue security, because in the generation of A, the input
is public, whereas security of a PRG is only given for secret
inputs.

Other possible choices of primitives that would yield
better performance are be the ChaCha20 stream cipher [12]
that has recently been standardized for TLS [52] or the
BLAKE2X extendable output function [7]. Unfortunately,
neither of these functions has received a lot of cryptanalytic
attention, yet, so we prefer to stick to the conservative
choice of Keccak, which was standardized after years of
cryptanalytic scrutiny through the course of the SHA-3
competition.

The NTT domain. Computing the discrete Fourier trans-
form on elements from Rq can be done with methods
analogous to the fast Fourier transform [31], except that
operations on coefficients are defined in a finite field [64].
This is often referred to as the number theoretic transform
(NTT). Before being able to define the expansion of the seed
ρ into the matrix A, we need to define the NTT domain of
polynomials. Let ω = 3844 ∈ Zq and ψ =

√
ω = 62,

where ψ is chosen as the smallest element of multiplicative
order 29 in F∗q = F∗7681.

For a polynomial g =
∑255

i=0 giX
i ∈ Rq we define the

polynomial ĝ in NTT domain as

NTT(g) = ĝ =

255∑
i=0

ĝiX
i, with ĝi =

255∑
j=0

ψjgjω
ij .

The inverse NTT−1 of the function NTT is essentially
the same as the computation of NTT, except that it uses
ω−1 mod q = 6584, multiplies by powers of ψ−1 mod

q = 1115 after the summation, and also multiplies each
coefficient by the scalar n−1 mod q = 7651, so that

NTT−1(ĝ) = g =

255∑
i=0

giX
i, with gi = n−1ψ−i

255∑
j=0

ĝjω
−ij .

For two polynomials f ,g ∈ Rq, the product fg can be
computed as NTT−1(NTT(f) ◦ NTT(g)), where ◦ denotes
the point-wise multiplication.

Generation of A. Generation of the matrix A = (ai,j) ∈
Rk×kq receives as input the public seed ρ. To generate
the entry ai,j ∈ Rq we first expand ρ through cSHAKE-
128 with the 2-byte domain separator (i, j). The output
of this expansion is considered a stream of 16-bit little-
endian integers. On this sequence of 16-bit integers we run
rejection sampling to obtain coefficients in {0, . . . , q − 1}.
The resulting polynomial ai,j is assumed to be in NTT
domain.

Generation of noise polynomials. Noise polynomials in
Kyber are sampled from β4. To obtain such a noise polyno-
mial we first expand a seed to an array of n = 256 uniformly
random bytes (r0, . . . , r255). We then generate coefficient ei
of a noise polynomial e =

∑255
i=0 eiX

i by subtracting the
Hamming weight of the most significant nibble of ri from
the Hamming weight of the least significant nibble of ri.

Encoding of keys and ciphertexts. In NEWHOPE, polyno-
mials in public keys and the ciphertext are in NTT domain;
in Kyber all polynomials sent over the channel are in normal
domain. This is necessary for the compression through
rounding (see Section 3) to work.

A Kyber public key is a tuple (t, ρ), where t is a vector
of three polynomials with 256 11-bit coefficients each, and ρ
is a 32-byte seed. We encode the polynomials in compressed
little-endian format to fit it in (256 · 11)/8 = 352 bytes,
concatenate the compressed three polynomials and finally
concatenate ρ to obtain public keys of 3 · 352 + 32 = 1088
bytes.

A Kyber secret key is a vector of three polynomials
in NTT domain with 256 13-bit coefficients each. We
store these polynomials in compressed little-endian format
resulting in a total of (3 · 256 · 13)/8 = 1248 bytes.
For re-encapsulation during decapsulation we additionally
need the public key, which we simply concatenate and
store as part of the secret key. Finally, we also concate-
nate H(pk) to avoid having to compute this hash during
decapsulation and concatenates the 32 bytes of the value
z that is used to compute the pseudo-random returned key
when re-encapsulation fails. This results in a total size of
1248 + 1088 + 32 + 32 = 2400 bytes for the secret key.

A Kyber ciphertext is a 3-tuple (u, v, d), where u is
a vector of three polynomials with 256 11-bit coefficients
each, v is a polynomial with 256 3-bit coefficients, and d
is a 32-byte hash. Using the same compressed little-endian
format for polynomials as for keys we obtain ciphertexts
with a total size of 3 · 352+ (3 · 256)/8+ 32 = 1184 bytes.

Size-speed tradeoffs. It is possible to use different tradeoffs
between secret-key size and decapsulation speed. If secret-
key size is critical, it is of course possible to not store H(pk)
and also to not store the public key as part of the secret key
but instead recompute it during decapsulation. Furthermore,
not keeping the secret key in NTT domain makes it possible
to compress each coefficient to only 5 bits, resulting in
a total size of only 320 bytes for the three polynomials.
Finally, as all randomness in key generation is generated
from two 32-byte seeds, it is also possible to only store
these seeds and re-run key generation during decapsulation.

In the other direction, if secret-key size does not matter
very much and decapsulation speed is critical, one might
decide to store the expanded matrix A as part of the secret
key and avoid recomputation from the seed ρ during the
re-encapsuation part of decapsulation.

All performance results reported in the following assume
the secret-key format described in the previous paragraph;
i.e., with polynomials in NTT domain, including the public
key and H(pk), but not including A.

7.2. Reference implementation

Kyber’s reference implementation in C follows in the
spirit of the NEWHOPE reference implementation described
in [4, Sec. 7.2]. In particular, it only relies on 16-bit and 32-
bit integer arithmetic (outside of Keccak) and uses the same
combination of short Barrett reductions and Montgomery
reductions to accelerate the NTT computation. One conse-
quence of the modulus q = 7681 is that the short Barrett
reduction becomes slightly more efficient; an unsigned 16-
bit integer a can be reduced to an unsigned integer r
between 0 and 11768 and congruent modulo q using the
formula r = a - (a >> 13)*KYBER_Q.

7.3. AVX2 implementation

Modern 64-bit Intel processors feature the AVX2 vector-
instruction set that supports operations on 256-bit vectors
that can be interpreted as vectors of 8 single-precision or
4-double-precision floating-point numbers, or as vectors of
integers of various sizes. The implementation of NEWHOPE
described in [4, Sec. 7] made use of the AVX2 vectorized
double-precision floating-point operations for fast arithmetic
on polynomials; in the AVX2-optimized implementation of
Kyberwe use the AVX2 integer instructions.

Polynomial arithmetic. We represent polynomials as ar-
rays of 16-bit unsigned integers, but temporarily switch to
signed 16-bit integers during the computation of the NTT.
The details of the carefully optimized NTT computations
are given in [70]; it achieves a speedup of more than a

factor of 5 compared to the approach used in NEWHOPE.
In order to keep the specification of Kyber simple, we
slightly modify the approach from [70] and insist that all
polynomials in NTT domain are stored in bitreversed order
and all polynomials in non-NTT domain are in normal
order. For details, see [8, Sec. 1.1]. One NTT takes 468
cycles; an NTT−1 operation takes 492 cycles. We also use
vectorized integer arithmetic for pointwise multiplication
and polynomial addition and subtraction.

Vectorized Keccak. As mentioned earlier, Keccak has a rep-
utation of not being particularly fast in software. One reason
is that Keccak is very hard to vectorize; in fact, according
to the eBACS benchmarks, the fastest implementation of
Keccak on Intel Haswell processors is the non-vectorized
“simple64” implementation.

The picture changes drastically if a protocol can com-
pute multiple independent streams of SHA-3, SHAKE, or
cSHAKE on inputs and outputs of the same length. More
specifically, the Keccak code package [16] includes an
implementation for AVX2 that computes 4 independent
streams in parallel. We make use of this 4-way paral-
lel implementation in the expansion of ρ involved in the
generation of the matrix A and also in the generation of
noise polynomials during encapsulation. Specifically, for
the generation of A, we generate 8 streams of uniformly
random 16-bit numbers via two calls to this function, leaving
only one sequential SHAKE-128 call. In encapsulation we
generate 8 arrays of 256 uniformly random bytes via two
calls to 4-way parallel cSHAKE-128 and discard one of
those arrays. The speedup from vectorized Keccak is crucial:
compared to NEWHOPE, Kyber needs to generate more than
twice as many uniformly random polynomial coefficients,
yet, with 35 356 cycles, generation of the matrix a is about
as fast as generation of the equivalent value a in NEWHOPE.

Rejection sampling. Part of the generation of A is rejection
sampling on the stream of 16-bit integers produced by
the cSHAKE-128 expansion. We adopt the fast vectorized
approach described in [41] for this task. One difference is
that we do not need to first conditionally subtract q four
times; we simply eliminate the upper 3 bits of each 16-bit
integer in a 256-bit vector through one mask instructions and
then compare to a constant vector filled with 16-bit copies
of q.

7.4. Flexibility of Kyber

One possible use of Kyber is for ephemeral key ex-
change, for example in TLS 1.2 as illustrated by [21]
and by Google’s post-quantum TLS experiment [23] with
NEWHOPE.8 Indeed, the experiment concluded that they
“did not find any unexpected impediment to deploying
something like NEWHOPE” [53] and Kyber features per-
formances close to the one of NEWHOPE but with smaller
sizes.

8. Note that one can easily combine KEMs (e.g., Kyber with a pre-
quantum KEM) by hashing the shared secret keys together.

However, the CCA security of Kyber makes it a much
more versatile tool. Not only is it possible to cache
ephemeral keys for some time (which would be a security
disaster for BCNS, FRODO, or NEWHOPE), we can also
use it for classical IND-CCA public-key encryption of mes-
sages of arbitrary length [34] (cf. the hybrid CCA-secure
scheme described in Appendix A) and for authenticated key
exchange protocols, as described in Fig. 3. The Kyber soft-
ware package includes implementations of the unilaterally
authenticated key exchange Kyber.UAKE described in Fig. 2
and the mutually authenticated key exchange Kyber.AKE
described in Fig. 3.

8. Performance results and comparison

In this section we report on the performance of our
standalone implementations of Kyber and Kyber-based au-
thenticated key exchange.

8.1. Standalone Kyber

In Table 3 we give performance results of the standalone
implementations of Kyber and compare them to results from
the literature on lattice-based KEMS, key-exchange proto-
cols, and encryption schemes. We restrict the comparison
to schemes that were published before or in parallel to
Kyber. We compiled the Kyber software with gcc-6.3.0
with optimization flags -O3 -fomit-frame-pointer
-march=native -fPIC.

To give an indication of security levels obtained by
the different schemes we include the core-SVP hardness
estimation (“Sec. estim.”) following the approach from [4].
Note that this estimate does not say anything about the
applicability of hybrid or algebraic attacks.

8.2. Kyber-based authenticated key exchanges

To illustrate one use case of Kyber and to establish a data
point for high-performance post-quantum authenticated key
exchanges, the Kyber software package includes implemen-
tations of Kyber.AKE and Kyber.UAKE. The performance
in terms of message sizes and CPU cycles (for our AVX2 op-
timized software) is summarized in Table 4. The only paper
describing an implementation of lattice-based authenticated
key exchange that we are aware of is [74]. Our software
outperforms the results of [74] by more than two orders of
magnitude.

Acknowledgements

The authors would like to thank Isis Lovecruft for sug-
gesting the name Kyber, Andreas Hülsing for very helpful
discussions, and Jan-Pieter D’Anvers for finding a flaw in a
previous version of the work.

This work is supported by a Veni Innovational Research
Grant from NWO under project number 639.021.645 and
by Canada’s NSERC CREATE program. IQC is supported

in part by the Government of Canada and the Province of
Ontario. Eike Kiltz was supported by the ERC Consolidator
Grant ERC-2013-CoG-615073-ERCC. Vadim Lyubashevsky
was supported by the the SNSF ERC Transfer Starting Grant
CRETP2-166734-FELICITY and the H2020 Project Safe-
crypto. Damien Stehlé was supported by the ERC Starting
Grant ERC-2013-StG-335086-LATTAC and acknowledges
the support of Bpifrance in the context of the national projet
RISQ (P141580). Tancrède Lepoint was supported by SRI
International’s IoT Security and Privacy Center.

References

[1] Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with
worst-case/average-case equivalence. pages 284–293, 1997. 1

[2] Martin R. Albrecht, Shi Bai, and Léo Ducas. A subfield lattice attack
on overstretched NTRU assumptions - cryptanalysis of some FHE and
graded encoding schemes. pages 153–178, 2016. 2

[3] Michael Alekhnovich. More on average case vs approximation
complexity. pages 298–307, 2003. 2

[4] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe.
Post-quantum key exchange – a new hope. In Proceedings of the 25th
USENIX Security Symposium, pages 327–343. USENIX Association,
2016. http://cryptojedi.org/papers/#newhope. 2, 5, 9, 10, 11, 12, 13

[5] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe.
NewHope without reconciliation. Cryptology ePrint Archive, Report
2016/1157, 2016. http://eprint.iacr.org/2016/1157. 2

[6] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast
cryptographic primitives and circular-secure encryption based on hard
learning problems. pages 595–618, 2009. 1, 2

[7] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O’Hearn, and
Christian Winnerlein. BLAKE2X, 2016. https://blake2.net/blake2x.
pdf. 10

[8] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lep-
oint, Vadim Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor
Seiler, and Damien Stehlé. CRYSTALS-Kyber – algorithm specifica-
tions and supporting documentation. Submission to the NIST post-
quantum project, 2017. https://pq-crystals.org/kyber/resources.shtml.
9, 11

[9] Shi Bai, Adeline Langlois, Tancrède Lepoint, Damien Stehlé, and Ron
Steinfeld. Improved security proofs in lattice-based cryptography:
Using the Rényi divergence rather than the statistical distance. pages
3–24, 2015. 5

[10] Abhishek Banerjee, Hai Brenner, Gaëtan Leurent, Chris Peikert, and
Alon Rosen. SPRING: Fast pseudorandom functions from rounded
ring products. pages 38–57, 2015. 6

[11] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. pages 62–73, 1993. 3

[12] Daniel J. Bernstein. ChaCha, a variant of Salsa20. In Workshop
Record of SASC 2008: The State of the Art of Stream Ciphers, 2008.
http://cr.yp.to/papers.html#chacha. 10

[13] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and
Christine van Vredendaal. NTRU prime. Cryptology ePrint Archive,
Report 2016/461, 2016. http://eprint.iacr.org/2016/461. 2, 9, 13

[14] Daniel J. Bernstein and Tanja Lange. eBACS: ECRYPT benchmark-
ing of cryptographic systems. http://bench.cr.yp.to (accessed 2017-
05-19). 7, 13

[15] Daniel J. Bernstein, Tanja Lange, and Peter Schwabe. The security
impact of a new cryptographic library. In Alejandro Hevia and
Gregory Neven, editors, Progress in Cryptology – LATINCRYPT
2012, volume 7533 of LNCS, pages 159–176. Springer, 2012. http:
//cryptojedi.org/papers/#coolnacl. 7

http://cryptojedi.org/papers/#newhope
http://eprint.iacr.org/2016/1157
https://blake2.net/blake2x.pdf
https://blake2.net/blake2x.pdf
https://pq-crystals.org/kyber/resources.shtml
http://cr.yp.to/papers.html#chacha
http://eprint.iacr.org/2016/461
http://bench.cr.yp.to
http://cryptojedi.org/papers/#coolnacl
http://cryptojedi.org/papers/#coolnacl

TABLE 3. COMPARISON OF LATTICE-BASED KEMS AND PUBLIC-KEY ENCRYPTION. BENCHMARKS WERE PERFORMED ON AN INTEL CORE
I7-4770K (HASWELL) IF NOT INDICATED OTHERWISE. CYCLES ARE STATED FOR KEY GENERATION (K), ENCAPSULATION/ENCRYPTION (E), AND

DECAPSULATION/DECRYPTION (D) BYTES ARE GIVEN FOR SECRET KEYS (sk), PUBLIC KEYS (pk), AND CIPHERTEXTS (c). THE COLUMN “CT?”
INDICATES WHETHER THE SOFTWARE IS RUNNING IN CONSTANT TIME, I.E., WITH PROTECTION AGAINST TIMING ATTACKS.

Scheme Sec. estim. Prob. ct? Cycles Bytes

Passively secure KEMs

BCNS [21] 78a Ring-LWE yes K: ≈ 2 477 958 sk: 4 096
E: ≈ 3 995 977 pk: 4 096
D: ≈ 481 937 c: 4 224

NEWHOPE [4] 255a Ring-LWE yes K: 88 920 sk: 1 792
(AVX2 optimized) E: 110 986 pk: 1 824

D: 19 422 c: 2 048

FRODO [20] 130a LWE yes K: ≈ 2 938 000b sk: 11 280
(recommended parameters) E: ≈ 3 484 000b pk: 11 296

D: ≈ 338 000b c: 11 288

LWR OKCN [49] 137a LWR yes K: 2 664 789c sk: 10880
(recommended parameters) E: 3 953 182c pk: 9 968

D: 307 404c c: 8 224

LWE OKCN [49] 131a LWE yes K: 3 064 789c sk: 11392
(recommended parameters) E: 4 023 632c pk: 9 968

D: 335 380c c: 8 608

CCA-secure KEMs

Streamlined NTRU Prime 4591761 [13] 137a NTRUk yes K: 59 456e sk: 1600
E: 97 684e pk: 1218
D: > 6 000 000 c: 1047

spLWE-KEM [29] 128i spLWE ? K: ≈ 336 700d sk: ?
(128-bit PQ parameters) E: ≈ 813 800d pk: ?

D: ≈ 785 200d c: 804

NTRU-KEM [47] 123a NTRU yes K: 307 914 sk: 1 422
E: 48 646 pk: 1 140
D: 67 338 c: 1 281

Kyber (this paper) 161a Module-LWE yes K: 243 004 sk: 2 368
(C reference) E: 332 616 pk: 1 088

D: 394 424 c: 1 184

Kyber (this paper) 161a Module-LWE yes K: 85 472 sk: 2 400
(AVX2 optimized) E: 112 660 pk: 1 088

D: 108 904 c: 1 184

CCA-secure public-key encryption

NTRUEncrypt ees743ep1[42] 159a NTRU no K: 1 194 816 sk: 1 120
E: 57 440 pk: 1 027
D: 110 604 c: 980

Lizard [30] 128i LWE+LWR no K: 97 573 000f sk: 466 944g,h

(recommended parameters) E: ≈ 35 050f pk: 2 031 616h

D: ≈ 80 840f c: 1 072

a According to the conservative “best known quantum attack” estimates from [4].
b Benchmarked on a 2.6GHz Intel Xeon E5 (Sandy Bridge).
c Benchmarked on a 2.3GHz Intel Core i7-4712MQ.
d Benchmarked on “PC (Macbook Pro) with 2.6GHz Intel Core i5”.
e Benchmarked by eBACS [14] on Intel Xeon E3-1275 (Haswell).
f As reported by the software from https://github.com/LizardOpenSource/Lizard_c, compiled with gcc-6.3 with flags
-O3 -fomit-frame-pointer -msse2avx -mavx2 -march=native on Intel Core i7-4770K.

g Unlike our scheme, the paper reports secret-key size without the public key required for decryption in the Targhi-Unruh transform.
h Sizes used by the software; those could be compressed by a factor 1.6, incurring only small computational overhead.
i According to the conservative “best known quantum attack” estimates from [4], with appropriate adaptations (balanced lattice attacks [30, Sec. 4.2]).
k The problem underlying NTRU Prime is subtly different than in NTRU; it uses a different ring than commonly used in NTRU and uses

deterministic noise.

https://github.com/LizardOpenSource/Lizard_c

TABLE 4. MESSAGE SIZES AND CYCLE COUNTS FOR Kyber.UAKE
AND Kyber.AKE.

Bytes Cycles

P1 → P2 P2 → P1 P1(start) P2 P1(end)

UAKE 2 272 1 184 199 300 225 544 110 572
AKE 2 272 2 368 196 840 334 672 219 136

[16] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche,
and Ronny Van Keer. Keccak code package, 2017. https://github.
com/gvanas/KeccakCodePackage (accessed 2017-05-17). 11

[17] Jean-François Biasse and Fang Song. Efficient quantum algorithms
for computing class groups and solving the principal ideal problem
in arbitrary degree number fields. pages 893–902, 2016. 2, 3, 9

[18] Andrej Bogdanov, Siyao Guo, Daniel Masny, Silas Richelson, and
Alon Rosen. On the hardness of learning with rounding over small
modulus. pages 209–224, 2016. 6

[19] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Chris-
tian Schaffner, and Mark Zhandry. Random oracles in a quantum
world. pages 41–69, 2011. 4

[20] Joppe W. Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael
Naehrig, Valeria Nikolaenko, Ananth Raghunathan, and Douglas Ste-
bila. Frodo: Take off the ring! Practical, quantum-secure key exchange
from LWE. pages 1006–1018, 2016. 2, 9, 13

[21] Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas Stebila.
Post-quantum key exchange for the TLS protocol from the ring
learning with errors problem. pages 553–570, 2015. 2, 9, 11, 13

[22] Colin Boyd, Yvonne Cliff, Juan Gonzalez Nieto, and Kenneth G.
Paterson. Efficient one-round key exchange in the standard model.
pages 69–83, 2008. 8

[23] Matt Braithwaite. Experimenting with post-quantum cryptogra-
phy. Posting on the Google Security Blog, 2016. https://security.
googleblog.com/2016/07/experimenting-with-post-quantum.html. 2,
11

[24] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled)
fully homomorphic encryption without bootstrapping. In ITCS ’12
Proceedings of the 3rd Innovations in Theoretical Computer Science
Conference, pages 309–325. ACM, 2012. 2

[25] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and
Damien Stehlé. Classical hardness of learning with errors. pages
575–584, 2013. 1

[26] Peter Campbell, Michael Groves, and Dan Shepherd. Soliloquy: A
cautionary tale. In ETSI 2nd Quantum-Safe Crypto Workshop, pages
1–9, 2014. 2, 3, 9

[27] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols
and their use for building secure channels. pages 453–474, 2001. 8

[28] L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner, and
D. Smith-Tone. Report on post-quantum cryptography. NISTIR 8105,
2016. http://dx.doi.org/10.6028/NIST.IR.8105. 1

[29] Jung Hee Cheon, Kyoohyung Han, Jinsu Kim, Changmin Lee, and
Yongha Son. A practical post-quantum public-key cryptosystem based
on splwe. In Seokhie Hong and Jong Hwan Park, editors, Information
Security and Cryptology – ICISC 2016, volume 10157 of LNCS, pages
51–74. Springer, 2017. https://eprint.iacr.org/2016/1055. 13

[30] Jung Hee Cheon, Duhyeong Kim, Joohee Lee, and Yong Soo Song.
Lizard: Cut off the tail! // practical post-quantum public-key encryp-
tion from LWE and LWR. IACR Cryptology ePrint Archive report
2016/1126, 2016. https://eprint.iacr.org/2016/1126. 2, 13

[31] James W. Cooley and John W. Tukey. An algorithm for the machine
calculation of complex Fourier series. Mathematics of computation,
19(90):297–301, 1965. 10

[32] Ronald Cramer, Léo Ducas, Chris Peikert, and Oded Regev. Recov-
ering short generators of principal ideals in cyclotomic rings. pages
559–585, 2016. 2, 3, 9

[33] Ronald Cramer, Léo Ducas, and Benjamin Wesolowski. Short Stickel-
berger class relations and application to ideal-SVP. In Jean-Sébastien
Coron and Jesper Buus Nielsen, editors, Advances in Cryptology
– EUROCRYPT 2017, volume 10210 of LNCS, pages 324–348.
Springer, 2017. 2, 3, 9

[34] Ronald Cramer and Victor Shoup. Design and analysis of practical
public-key encryption schemes secure against adaptive chosen cipher-
text attack. 33(1):167–226, 2003. 8, 12, 15, 16

[35] M. H. Devoret and R. J. Schoelkopf. Superconducting circuits for
quantum information: an outlook. Science, 339(6124):1169–1174,
2013. 1

[36] Jintai Ding, Xiang Xie, and Xiaodong Lin. A simple provably secure
key exchange scheme based on the learning with errors problem.
Cryptology ePrint Archive, Report 2012/688, 2012. http://eprint.iacr.
org/2012/688. 2

[37] Atsushi Fujioka, Koutarou Suzuki, Keita Xagawa, and Kazuki
Yoneyama. Strongly secure authenticated key exchange from fac-
toring, codes, and lattices. pages 467–484, 2012. 8

[38] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asym-
metric and symmetric encryption schemes. pages 537–554, 1999.
6

[39] Florian Göpfert, Christine van Vredendaal, and Thomas Wunderer.
A quantum attack on LWE with arbitrary error distribution. IACR
Cryptology ePrint Archive report 2017/221, 2017. https://eprint.iacr.
org/2017/221. 9

[40] Lov K. Grover. A fast quantum mechanical algorithm for database
search. pages 212–219, 1996. 8

[41] Shay Gueron and Fabian Schlieker. Speeding up R-LWE post-
quantum key exchange. In Billy Bob Brumley and Juha Röning,
editors, Secure IT Systems, volume 10014 of LNCS, pages 187–198.
Springer, 2016. https://eprint.iacr.org/2016/467. 11

[42] Jeffrey Hoffstein, Jill Pipher, John M. Schanck, Joseph H. Silverman,
William Whyte, and Zhenfei Zhang. Choosing parameters for NTRU-
Encrypt. In Helena Handschuh, editor, Topic in Cryptology – CT-RSA
2017, volume 10159 of LNCS, pages 3–18. Springer, 2017. 9, 13

[43] Jeffrey Hoffstein, Jull Pipher, and Joseph H. Silverman. NTRU:
a ring-based public key cryptosystem. In Joe P. Buhler, editor,
Algorithmic number theory, volume 1423 of LNCS, pages 267–288.
Springer, 1998. https://www.securityinnovation.com/uploads/Crypto/
ANTS97.ps.gz. 1

[44] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular
analysis of the Fujisaki-Okamoto transformation. IACR Cryptology
ePrint Archive report 2017/604, 2017. https://eprint.iacr.org/2017/
604. 2, 3, 6, 7

[45] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular
analysis of the Fujisaki-Okamoto transformation. pages 341–371,
2017. 7

[46] Nick Howgrave-Graham. A hybrid lattice-reduction and meet-in-the-
middle attack against NTRU. In Alfred Menezes, editor, Advances in
Cryptology – CRYPTO 2007, volume 4622 of LNCS, pages 150–169.
Springer, 2007. http://www.iacr.org/archive/crypto2007/46220150/
46220150.pdf. 9

[47] Andreas Hülsing, Joost Rijneveld, John Schanck, and Peter Schwabe.
High-speed key encapsulation from NTRU. In Wieland Fischer and
Naofumi Homma, editors, Cryptographic Hardware and Embedded
Systems – CHES 2017, LNCS. Springer, 2017 (to appear). http://
cryptojedi.org/papers/#ntrukem. 13

[48] Zhengzhong Jin and Yunlei Zhao. Optimal key consensus in presence
of noise. arXiv preprint arXiv:1611.06150, 2016. http://arxiv.org/pdf/
1509.02374v2. 2

https://github.com/gvanas/KeccakCodePackage
https://github.com/gvanas/KeccakCodePackage
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
http://dx.doi.org/10.6028/NIST.IR.8105
https://eprint.iacr.org/2016/1055
https://eprint.iacr.org/2016/1126
http://eprint.iacr.org/2012/688
http://eprint.iacr.org/2012/688
https://eprint.iacr.org/2017/221
https://eprint.iacr.org/2017/221
https://eprint.iacr.org/2016/467
https://www.securityinnovation.com/uploads/Crypto/ANTS97.ps.gz
https://www.securityinnovation.com/uploads/Crypto/ANTS97.ps.gz
https://eprint.iacr.org/2017/604
https://eprint.iacr.org/2017/604
http://www.iacr.org/archive/crypto2007/46220150/46220150.pdf
http://www.iacr.org/archive/crypto2007/46220150/46220150.pdf
http://cryptojedi.org/papers/#ntrukem
http://cryptojedi.org/papers/#ntrukem
http://arxiv.org/pdf/1509.02374v2
http://arxiv.org/pdf/1509.02374v2

[49] Zhengzhong Jin and Yunlei Zhao. Optimal key consensus in presence
of noise. IACR Cryptology ePrint Archive report 2017/1058, 2017.
https://eprint.iacr.org/2017/1058. 13

[50] Paul Kirchner and Pierre-Alain Fouque. Revisiting lattice attacks
on overstretched NTRU parameters. In Jean-Sébastien Coron and
Jesper Buus Nielsen, editors, Advances in Cryptology – EUROCRYPT
2017, volume 10210 of LNCS, pages 3–26. Springer, 2017. 2, 3

[51] Thijs Laarhoven. Search problems in cryptography. PhD thesis,
Eindhoven University of Technology, 2015. http://www.thijs.com/
docs/phd-final.pdf. 9

[52] A. Langley, W. Chang, N. Mavrogiannopoulos, J. Strombergson, and
S. Josefsson. Chacha20-poly1305 cipher suites for transport layer
security (TLS). RFC 7905, 2016. https://tools.ietf.org/html/rfc7905.
10

[53] Adam Langley. Cecpq1 results. Posting on Adam Langley’s Personal
Blog, 2016. https://www.imperialviolet.org/2016/11/28/cecpq1.html.
2, 11

[54] Adeline Langlois and Damien Stehlé. Worst-case to average-case
reductions for module lattices. Des. Codes Cryptography, 75(3):565–
599, 2015. 2, 5

[55] Patrick Longa and Michael Naehrig. Speeding up the number the-
oretic transform for faster ideal lattice-based cryptography. IACR
Cryptology ePrint Archive report 2016/504, 2016. https://eprint.iacr.
org/2016/504. 2

[56] Vadim Lyubashevsky and Daniele Micciancio. Generalized compact
Knapsacks are collision resistant. pages 144–155, 2006. 1

[57] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal
lattices and learning with errors over rings. pages 1–23, 2010. 1,
2

[58] Daniele Micciancio. Improved cryptographic hash functions with
worst-case/average-case connection. pages 609–618, 2002. 1

[59] K. Moriarty, B. Kaliski, J. Jonsson, and A. Rusch. PKCS #1: RSA
cryptography specifications version 2.2. RFC 8017, 2016. https:
//tools.ietf.org/html/rfc8017. 10

[60] National Institute of Standards and Technology. SHA-3 standard:
Permutation-based hash and extendable-output functions. FIPS PUB
202, 2015. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf.
9

[61] Chris Peikert. Public-key cryptosystems from the worst-case shortest
vector problem: extended abstract. pages 333–342, 2009. 1, 2

[62] Chris Peikert. Lattice cryptography for the Internet. In Michele
Mosca, editor, Post-Quantum Cryptography, volume 8772 of LNCS,
pages 197–219. Springer, 2014. http://web.eecs.umich.edu/~cpeikert/
pubs/suite.pdf. 2

[63] Chris Peikert and Alon Rosen. Efficient collision-resistant hashing
from worst-case assumptions on cyclic lattices. pages 145–166, 2006.
1

[64] John M. Pollard. The fast Fourier transform in a finite field. Mathe-
matics of computation, 25(114):365–374, 1971. 10

[65] Thomas Pöppelmann and Tim Güneysu. Towards practical lattice-
based public-key encryption on reconfigurable hardware. pages 68–
85, 2014. 2

[66] Charles Rackoff and Daniel R. Simon. Non-interactive zero-
knowledge proof of knowledge and chosen ciphertext attack. pages
433–444, 1992. 3

[67] Oded Regev. New lattice based cryptographic constructions. pages
407–416, 2003. 1

[68] Oded Regev. On lattices, learning with errors, random linear codes,
and cryptography. pages 84–93, 2005. 1, 2

[69] Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa. Tightly-
secure key-encapsulation mechanism in the quantum random oracle
model. IACR Cryptology ePrint Archive report 2017/1005, 2017.
https://eprint.iacr.org/2017/1005. 7

[70] Gregor Seiler. Faster AVX2 optimized NTT multiplication for ring-
LWE lattice cryptography. IACR Cryptology ePrint Archive report
2018/039, 2018. https://eprint.iacr.org/2018/039. 11

[71] Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa.
Efficient public key encryption based on ideal lattices. In Mitsuri
Matsui, editor, Advances in Cryptology – ASIACRYPT 2009, volume
5912 of LNCS, pages 617–635. Springer, 2009. 1

[72] Ehsan Ebrahimi Targhi and Dominique Unruh. Post-quantum security
of the Fujisaki-Okamoto and OAEP transforms. pages 192–216, 2016.
7

[73] Thomas Wunderer. Revisiting the hybrid attack: Improved analysis
and refined security estimates. Cryptology ePrint Archive, Report
2016/733, 2016. http://eprint.iacr.org/2016/733. 9

[74] Jiang Zhang, Zhenfeng Zhang, Jintai Ding, Michael Snook, and Özgür
Dagdelen. Authenticated key exchange from ideal lattices. pages
719–751, 2015. 12

Appendix

We use the canonical way proposed by Cramer and
Shoup to compose Kyber, our secure key encapsulation
mechanism (KEM), with a secure one-time symmetric-
key encryption (SKE, or DEM) scheme [34]. We call
Kyber.Hybrid the resulting hybrid encryption scheme.

Algorithm 6 Kyber.Hybrid.KeyGen()

1: (pk := (ρ, t), sk := (s, ρ, t))← Kyber.KeyGen()
2: return (pk , sk)

Algorithm 7 Kyber.Hybrid.Enc(pk = (ρ, t),m)

1: (c,K)← Kyber.Encaps(pk)
2: c′ := E(K,m)
3: return c′′ := (c, c′)

Algorithm 8 Kyber.Hybrid.Dec(sk = (s, z, ρ, t), c′′ =
(c, c′))

1: K := Kyber.Decaps(sk , c)
2: return m := D(K, c′)

On the choice of a symmetric encryption scheme. Any
SKE scheme that is (one-time) secure against chosen-
ciphertext attacks and with key space K = {0, 1}256
can be combined with our key encapsulation mechanism
Kyber. Typical examples include AES-OCB, AES-GCM or
ChaCha20-Poly1305. Depending on one’s application and
architecture, different needs and choices for the symmetric
encryption scheme are possible; we decide in this paper
to not restrict ourselves to a specific application nor to a
specific cipher. Additionally to the previously mentioned
ciphers, several submissions to the Caesar competition for
authenticated encryption are serious candidates for SKE.

Description of Kyber.Hybrid. We describe the
public-key hybrid encryption scheme Kyber.Hybrid =
(KeyGen,Enc,Dec) in Algorithms 6 to 8, assuming a SKE

https://eprint.iacr.org/2017/1058
http://www.thijs.com/docs/phd-final.pdf
http://www.thijs.com/docs/phd-final.pdf
https://tools.ietf.org/html/rfc7905
https://www.imperialviolet.org/2016/11/28/cecpq1.html
https://eprint.iacr.org/2016/504
https://eprint.iacr.org/2016/504
https://tools.ietf.org/html/rfc8017
https://tools.ietf.org/html/rfc8017
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://web.eecs.umich.edu/~cpeikert/pubs/suite.pdf
http://web.eecs.umich.edu/~cpeikert/pubs/suite.pdf
https://eprint.iacr.org/2017/1005
https://eprint.iacr.org/2018/039
http://eprint.iacr.org/2016/733

(E,D) where the encryption algorithm E takes as input a
key in K = {0, 1}256 and a message in {0, 1}∗ and outputs
a ciphertext, and where the decryption algorithm D takes
as input a key and a ciphertext and outputs a message (or
the rejection symbol ⊥).

Correctness and security. The correctness and security of
our hybrid encryption scheme Kyber.Hybrid follow from
those of the KEM and the chosen SKE [34, Th. 5].

	Introduction
	Our contribution

	Preliminaries
	Cryptographic definitions
	Rings and distributions
	Module-LWE

	Kyber's IND-CPA-secure encryption
	The CCA-secure KEM
	Key Exchange Protocols
	Parameters and Security Analysis
	Implementation
	Primitives and encodings
	Reference implementation
	AVX2 implementation
	Flexibility of Kyber

	Performance results and comparison
	Standalone Kyber
	Kyber-based authenticated key exchanges

	References
	Appendix

