
Introduction
This user manual provides the guidelines to build step by step a complete Artificial Intelligence (AI) IDE-based project for
STM32 microcontrollers with automatic conversion of pretrained Neural Networks (NN) and integration of the generated
optimized library. It describes the X-CUBE-AI Expansion Package that is fully integrated with the STM32CubeMX tool. This
user manual also describes optional add-on AI test applications or utilities for AI system performance and validation.

The main part of the document is a hands-on learning to generate quickly an STM32 AI-based project. A NUCLEO-F746ZG
development kit and several models for Deep Learning (DL) from the public domain are used as practical examples. Any STM32
development kits or customer boards based on a microcontroller in the STM32F0, STM32F3, STM32F4, STM32G0, STM32G4,
STM32L0, STM32L4, STM32L4+, STM32L5, STM32F7, STM32H7, STM32U5, STM32WB, or STM32WL series can also be
used with minor adaptations.

The next part of the document details and describes the use of the X-CUBE-AI for AI performance and validation add-on
applications. It covers also internal aspects such as the generated NN library. Additionally, more information (command-line
support, supported toolboxes and layers, reported metrics) is available from the Documentation folder in the installed
package.

Getting started with X-CUBE-AI Expansion Package for Artificial Intelligence (AI)

UM2526

User manual

UM2526 - Rev 8 - January 2022
For further information contact your local STMicroelectronics sales office.

www.st.com

https://www.st.com/en/product/x-cube-ai?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526
https://www.st.com/en/product/stm32cubemx?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526
https://www.st.com/en/product/nucleo-f746zg?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526
https://www.st.com/en/product/x-cube-ai?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526

1 General information

The X-CUBE-AI Expansion Package is dedicated to AI projects running on STM32 Arm® Cortex®-M-based
MCUs.
The descriptions in the current revision of the user manual are based on:
• X-CUBE-AI 7.1.0
• Embedded inference client API 1.2
• Command-line interface 1.6

The pretrained Keras DL model used for the example in this document is:
• https://github.com/Shahnawax/HAR-CNN-Keras: human activity recognition using CNN in Keras

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

1.1 What is STM32Cube?
STM32Cube is an STMicroelectronics original initiative to significantly improve designer productivity by reducing
development effort, time, and cost. STM32Cube covers the whole STM32 portfolio.
STM32Cube includes:
• A set of user-friendly software development tools to cover project development from conception to

realization, among which are:
– STM32CubeMX, a graphical software configuration tool that allows the automatic generation of C

initialization code using graphical wizards
– STM32CubeIDE, an all-in-one development tool with peripheral configuration, code generation, code

compilation, and debug features
– STM32CubeProgrammer (STM32CubeProg), a programming tool available in graphical and command-

line versions
– STM32CubeMonitor (STM32CubeMonitor, STM32CubeMonPwr, STM32CubeMonRF,

STM32CubeMonUCPD) powerful monitoring tools to fine-tune the behavior and performance of STM32
applications in real-time

• STM32Cube MCU and MPU Packages, comprehensive embedded-software platforms specific to each
microcontroller and microprocessor series (such as STM32CubeF7 for the STM32F7 Series), which include:
– STM32Cube hardware abstraction layer (HAL), ensuring maximized portability across the STM32

portfolio
– STM32Cube low-layer APIs, ensuring the best performance and footprints with a high degree of user

control over hardware
– A consistent set of middleware components such as RTOS, USB, TCP/IP, graphics, and FAT file

system
– All embedded software utilities with full sets of peripheral and applicative examples

• STM32Cube Expansion Packages, which contain embedded software components that complement the
functionalities of the STM32Cube MCU and MPU Packages with:
– Middleware extensions and applicative layers
– Examples running on some specific STMicroelectronics development boards

1.2 How does X-CUBE-AI complement STM32Cube?
X-CUBE-AI extends STM32CubeMX by providing an automatic NN library generator optimized in computation
and memory (RAM and Flash memory) that converts pretrained Neural Networks from most used DL frameworks
(such as Keras, TensorFlow™ Lite, and ONNX) into a library that is automatically integrated in the final user
project. The project is automatically set up, ready for compilation and execution on the STM32 microcontroller.
X-CUBE-AI also extends STM32CubeMX by adding, for the project creation, specific MCU filtering to select the
right devices that fit specific criteria requirements (such as RAM or Flash memory size) for a user's NN.

UM2526
General information

UM2526 - Rev 8 page 2/69

https://www.st.com/en/product/x-cube-ai?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526
https://github.com/Shahnawax/HAR-CNN-Keras
https://www.st.com/stm32cube
https://www.st.com/en/product/stm32cubemx?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526
https://www.st.com/en/product/stm32cubeide?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526
https://www.st.com/en/product/stm32cubeprog?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526
https://www.st.com/en/product/stm32cubemonitor?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526
https://www.st.com/en/product/stm32cubemonpwr?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526
https://www.st.com/en/product/stm32cubemonrf?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526
https://www.st.com/en/product/stm32cubemonucpd?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526
https://www.st.com/en/embedded-software/stm32cube-mcu-mpu-packages.html
https://www.st.com/en/embedded-software/stm32cube-expansion-packages.html
https://www.st.com/en/product/stm32cubemx?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526

The X-CUBE-AI tool can generate three kinds of projects:
• System performance project running on the STM32 MCU allowing the accurate measurement of the NN

inference CPU load and memory usage
• Validation project that validates incrementally the results returned by the NN, stimulated by either random or

user test data, on both desktop PC and STM32 Arm® Cortex®-M-based MCU embedded environment
• Application template project allowing the building of AI-based application

When using a TensorFlow™ Lite model, the tool can generate the code using the STM32Cube.AI library or using
the TensorFlow™ Lite for Microcontrollers runtime provided in the TensorFlow™ source repository.

1.3 X-CUBE-AI core engine
The X-CUBE-AI core engine, presented in Figure 1 and Figure 2, is part of the X-CUBE-AI Expansion Package
described later in Section 1.4 . It provides an automatic and advanced NN mapping tool to generate and deploy
an optimized and robust C-model implementation of a pretrained Neural Network (DL model) for the embedded
systems with limited and constrained hardware resources. The generated STM32 NN library (both specialized
and generic parts) can be directly integrated in an IDE project or makefile-based build system. A well-defined and
specific inference client API (refer to Section 8 Embedded inference client API) is also exported to develop a
client AI-based application. Various frameworks (DL toolbox) and layers for Deep Learning are supported (refer to
Section 12 Supported toolboxes and layers for Deep Learning).
All X-CUBE-AI core features are available through a complete and unified Command Line Interface (console
level) to perform the main steps to analyze, validate, and generate an optimized NN C-library for STM32 devices
(refer to [6]). It provides also a post-training quantization support for the Keras model.

Figure 1. X-CUBE-AI core engine

A simple configuration interface is exposed. With the pretrained DL model file, only few parameters are
requested:
• Name: indicates the name of the generated C model (the default value is “network”)
• Compression: indicates the compression factor to reduce the size of weight/bias parameters (refer to

Section 6.1 Graph flow and memory layout optimizer)
• STM32 family: selects the optimized NN kernel runtime library

UM2526
X-CUBE-AI core engine

UM2526 - Rev 8 page 3/69

https://www.st.com/en/product/x-cube-ai?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526

Figure 2 summarizes the main supported features of the uploaded DL model and targeted subsystem runtime.

Figure 2. X-CUBE-AI overview

• Only simple tensor input and simple tensor output are supported
– 4-dim shape: batch, height, width, channel (“channel-last” format, refer to [10])
– Floating-point (32b) and fixed-point (8b) types

• Generated C models are fully optimized for STM32 Arm® Cortex®-M4/M7/M33 cores with FPU and DSP
extensions

X-CUBE-AI code generator can be used to generate and deploy a prequantized 8-bit fixed-point/integer Keras
model and the quantized TensorFlow™ Lite model. For the Keras model, a reshaped model file (h5*) and a
proprietary tensor-format configuration file (json) are required.

Figure 3. Quantization flow

The code generator quantizes weights and bias, and associated activations from floating point to 8-bit precision.
These are mapped on the optimized and specialized C implementation for the supported kernels (refer to [7]).
Otherwise, the floating-point version of the operator is used and float-to-8-bit and 8-bit-to-float convert operators
are automatically inserted. The objective of this technique is to reduce the model size while also improving the
CPU and hardware accelerator latency (including power consumption aspects) with little degradation in model
accuracy.

UM2526
X-CUBE-AI core engine

UM2526 - Rev 8 page 4/69

To generate the reshaped Keras model file and associated tensor-format configuration file from an already-trained
floating-point Keras model, the stm32ai application (command-line interface) integrates a complete post-training
quantization process (refer to [12]).

1.4 STM32CubeMX extension
STM32CubeMX is a software configuration tool for STM32 microcontrollers. In one click, it allows the creation
of a complete IDE project for STM32 including the generation of the C initializing code for device and platform
setup (pins, clock tree, peripherals, and middleware) using graphical wizards (such as the pinout-conflict solver,
clock-tree setting helper, and others).

Figure 4. X-CUBE-AI core in STM32CubeMX

From the user point of view, the integration of the X-CUBE-AI Expansion Package can be considered as the
addition of a peripheral or middleware software component. On top of X-CUBE-AI core, the following main
functionalities are provided:
• MCU filter selector is extended with an optional specific AI filter to remove the devices that do not have

enough memory. If enabled, STM32 devices without Arm® Cortex®-M4, -M7, or -M33 core are directly
filtered out.

• Provides a complete AI UI configuration wizard allowing the upload of multiple DL models. Includes a
validation process of the generated C code on the desktop PC and on the target.

• Extends the IDE project generator to assist the generation of the optimized STM32 NN library and its
integration for the selected STM32 Arm® Cortex®-M core and IDE.

• Optional add-on applications allow the generation of a complete and ready-to-use AI test application project
including the generated NN libraries. The user must just have imported it inside the favorite IDE to generate
the firmware image and program it. No additional code or modification is requested from the end user.

• One-click support to generate, program, and run automatically an on-device AI validation firmware (including
support for the external memory).

• Generation using STM32Cube.AI runtime or TensorFlow™ Lite for Microcontrollers runtime when the Neural
Network file is a TensorFlow™ Lite file.

UM2526
STM32CubeMX extension

UM2526 - Rev 8 page 5/69

https://www.st.com/en/product/stm32cubemx?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526
https://www.st.com/en/product/x-cube-ai?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526

1.5 Acronyms, abbreviations, and definitions
Table 1 details the specific acronyms and abbreviations used in this document.

Table 1. Definition of terms used in this document

AI

Artificial Intelligence, sometimes called machine intelligence. Commonly, AI is the broad concept of
machines being able to carry out tasks in a way that can be considered as “smart” from a human
standpoint. It stands for the ability of a digital equipment to perform tasks associated with intelligent
beings.

DL Deep Learning (also known as deep structured learning or hierarchical learning). DL models are vaguely
inspired by information processing and communication patterns in biological nervous systems.

ML Machine Learning is an application of Artificial Intelligence (AI). It provides systems with the ability to
learn automatically and improve from experience without being explicitly programmed.

MACC Multiply-and-accumulate complexity is a unit that indicates the complexity of a DL model from a
processing standpoint.

PINNR
Platform-independent Neural Network representation is a file generated by the front end (X-CUBE-AI
core importer) to have a common and portable internal representation of the uploaded DL model for the
next stages (optimizer and C-code generator).

1.6 Prerequisites
The following packages must be installed (refer to Section 2 Installing X-CUBE-AI):
• STM32CubeMX V5.4.0 or later
• Additional software pack - STM32CubeMX AI (X-CUBE-AI) 7.1.0 pack
• STM32CubeProgrammer (STM32CubeProg) version 2.1.0 or later. Except when STM32CubeIDE is used,

it is necessary to install STM32CubeProgrammer to be able to benefit from the automatic validation on the
target.

One of the following toolchains or IDEs for STM32 must be installed:
• STMicroelectronics - STM32CubeIDE version 1.0.1 or later
• IAR Systems - IAR Embedded Workbench® IDE - Armv8.x (www.iar.com/iar-embedded-workbench)
• Keil® - MDK-ARM Professional Version - µVision® V5.25.2.0 (www.keil.com)
• GNU Arm Embedded Toolchain (developer.arm.com/open-source/gnu-toolchain/gnu-rm)

X-CUBE-AI can be deployed on the following operating systems:
• Windows® 10
• Ubuntu® 18.4
• macOS® (x64) (tested on macOS® Catalina)

Note: Ubuntu® is a registered trademark of Canonical Ltd.
macOS® and OS X® are trademarks of Apple Inc., registered in the U.S. and other countries and regions.
All other trademarks are the property of their respective owners.

1.7 License
X-CUBE-AI is delivered under the Mix Ultimate Liberty+OSS+3rd-party V1 software license agreement
(SLA0048).

UM2526
Acronyms, abbreviations, and definitions

UM2526 - Rev 8 page 6/69

https://www.st.com/en/product/stm32cubemx?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526
https://www.st.com/en/product/x-cube-ai?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526
https://www.st.com/en/product/stm32cubeprog?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526
https://www.st.com/en/product/stm32cubeide?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526
https://www.iar.com/iar-embedded-workbench/
http://www.keil.com/
https://developer.arm.com/open-source/gnu-toolchain/gnu-rm
https://www.st.com/en/product/x-cube-ai?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526
https://www.st.com/en/product/x-cube-ai?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526
https://www.st.com/sla0048
https://www.st.com/sla0048

2 Installing X-CUBE-AI

After downloading, installing, and launching STM32CubeMX (version 5.4.0 or later), the X-CUBE-AI Expansion
Package can be installed in a few steps.
1. From the menu, select [Help]>[Manage embedded software packages] or directly click on the [INSTALL/

REMOVE] button.

Figure 5. Managing embedded software packs in STM32CubeMX

2. From the Embedded Software Packages Manager window, press the [Refresh] button to get an updated list
of the add-on packs. Go to the STMicroelectronics tab to find X-CUBE-AI.

Figure 6. Installing X-CUBE-AI in STM32CubeMX

Note: X.Y.Z stands for the current X-CUBE-AI version.
If X-CUBE-AI is already installed, preferably remove it before the new installation.

UM2526
Installing X-CUBE-AI

UM2526 - Rev 8 page 7/69

https://www.st.com/en/product/stm32cubemx?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526
https://www.st.com/en/product/x-cube-ai?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526
https://www.st.com/en/product/x-cube-ai?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526

3. Select it by checking the corresponding box and install it by pressing the [Install Now] button. Once the
installation is completed, the corresponding box becomes green and the [Close] button can be pressed.

Figure 7. X-CUBE-AI in STM32CubeMX

The X-CUBE-AI Expansion Package contains an OS-specific part, which is downloaded at the first use of the
pack.
To trigger the download, either:
• select the AI filter in the MCU selector
• add the X-CUBE-AI extension to an STM32CubeMX project

Alternatively, it is possible to download the OS-specific part directly from https://sw-center.st.com/packs/x-cube-ai/
stm32ai-<os>-<version>.zip where:
• os is windows, linux, or mac
• version is the current 3-digit version (X.Y.Z)

For example: https://sw-center.st.com/packs/x-cube-ai/stm32ai-windows-7.1.0.zip for the Windows®-specific part
of X-CUBE-AI 7.1.0.

UM2526
Installing X-CUBE-AI

UM2526 - Rev 8 page 8/69

https://www.st.com/en/product/x-cube-ai?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526
https://sw-center.st.com/packs/x-cube-ai/stm32ai-%3cos%3e-%3cversion%3e.zip
https://sw-center.st.com/packs/x-cube-ai/stm32ai-%3cos%3e-%3cversion%3e.zip
https://sw-center.st.com/packs/x-cube-ai/stm32ai-windows-7.1.0.zip

3 Starting a new STM32 AI project

3.1 MCU and board selector
After launching the STM32CubeMX application, click on the [ACCESS TO MCU SELECTOR] or [ACCESS TO
BOARD SELECTOR] button. Alternately, select [File]>[New Project...] or the CTRL-N shortcut.

Figure 8. Creating a new project

At this point, the typical STM32CubeMX flow can be used to select a specific MCU or board. An optional MCU
filter entry allows the exclusion of the MCUs that do not have enough embedded memory (RAM, Flash memory,
or both) to store the optimized STM32 NN library. This specific AI filter is shown in Figure 9.

Figure 9. AI filter

Note: This feature is not available for the board selector and usable only for one NN model.

UM2526
Starting a new STM32 AI project

UM2526 - Rev 8 page 9/69

Figure 10 illustrates the case where a DL model has been uploaded and analyzed with the default options. A
pretrained NN model (Keras type) from the public domain is used: human activity recognition using CNN in Keras.

Figure 10. AI filter with default option

Figure 11 illustrates the case where a compression factor of 4 is applied.

Figure 11. AI filter with compression x4

Note: During the generation of the NN library, the size of the memory is also checked by the optimizer to notify the
user if the minimal RAM and Flash memory size constraints are not respected according the selected MCU.

UM2526
MCU and board selector

UM2526 - Rev 8 page 10/69

To continue, a NUCLEO-F746ZG development kit is selected as shown in Figure 12.

Figure 12. NUCLEO-F746ZG board selection

Click on the [Start Project] button to continue and confirm that all peripherals must be initialized with their default
modes.

Figure 13. Initialize all peripherals

3.2 Hardware and software platform settings
Once an MCU or a board is selected, the related STM32 pinout is displayed. From this window, the user can set
up the project by adding one or more additional software and peripherals, and configuring the clock.

UM2526
Hardware and software platform settings

UM2526 - Rev 8 page 11/69

https://www.st.com/en/product/nucleo-f746zg?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526

If an add-on AI application (refer to Section 4.1 Adding the X-CUBE-AI component) is used, a USART-based link
with the host development system is expected. For the STM32 Nucleo-144 development board, pins PD9 TX and
PD8 RX are connected to the ST-LINK peripheral to support the Virtual COM port (refer to Figure 14).

Figure 14. USART3 configuration

For the NUCLEO-F746ZG, additional configurations of the clocks and memory subsystem are also expected to
reach high-performance profile.

3.2.1 Increase or set the CPU and system clock frequency
1. Click the Clock Configuration tab.

By default, in this lab, the system clock (SYSCLK, HCLK) is 72 MHz.
2. Type 216 in the HCLK (MHz) input blue box (refer to Figure 16) to call the clock wizard to configure

automatically the PLL peripheral (and associated clock tree). If the clock wizard pop-up appears as shown in
Figure 15, click on the [OK] button to continue.

Figure 15. Clock wizard pop-up

UM2526
Hardware and software platform settings

UM2526 - Rev 8 page 12/69

Figure 16. System clock settings

3.2.2 Set the MCU memory subsystem
• From the Pinout & Configuration tab (refer to Figure 17), click on the [System Core]>[CORTEX_M7] entry to

open the Cortex®-M7 configuration wizard.
The core instruction and data caches, and ART accelerator subsystem must be enabled.

Figure 17. MCU memory subsystem (parameter settings)

UM2526
Hardware and software platform settings

UM2526 - Rev 8 page 13/69

Note: Setting the maximum value for the MCU clock is not mandatory. It must be aligned with the configuration that
is used in the final design. The setting of the wait-state for the Flash memory is automatically adjusted by the
STM32CubeMX platform code generator.

3.2.3 CRC
The CRC peripheral is requested to support the NN library runtime protected mechanism. It must be enabled.

Note: This is done automatically by the tool, so that it is not required to do it manually.

Figure 18. Enabling the CRC peripheral

UM2526
Hardware and software platform settings

UM2526 - Rev 8 page 14/69

4 X-CUBE-AI configuration wizard

4.1 Adding the X-CUBE-AI component
1. Click on the [Additional Softwares] button to add the X-CUBE-AI additional software to the project (refer to

Figure 19).

Figure 19. Additional software button

2. From the Additional Software Component Selection window, the X-CUBE-AI/core bundle (refer to Figure 20)
must be checked to be able to upload the NN models and generate the associated STM32 NN library, In this
case, as the library is fully integrated as a static library, the users only needs to implement their AI-based
application/middleware on top of the generated well-defined NN API [10].

Figure 20. Adding the X-CUBE-AI core component

3. Optionally, one of the add-on X-CUBE-AI applications (refer to Figure 21) from the X-CUBE-AI/Application
bundle can be selected.
– System performance: standalone AI test application for performance purpose
– Validation: AI test application for validation purpose
– Template application: basic application template for AI application

Figure 21. Add-on X-CUBE-AI applications

UM2526
X-CUBE-AI configuration wizard

UM2526 - Rev 8 page 15/69

4. Click on [OK] to finalize the selection

4.2 Enabling the X-CUBE-AI component
To enable and to configure the X-CUBE-AI component, the following additional steps are requested:
1. From the Pinout & Configuration tab, click on the [Additional Software] selector to discover the additional

pieces of software. Click on [STMicroelectronics X-CUBE-AI X.Y.Z] to open the initial AI configuration
window.

UM2526
Enabling the X-CUBE-AI component

UM2526 - Rev 8 page 16/69

2. Check [Artificial Intelligence Core] to enable the X-CUBE-AI core component. [Artificial Intelligence
Application] must be also checked to add the add-on AI application.
The AI application that is selected here corresponds to the application enabled during the previous step
(refer to Figure 21).

Figure 22. Main X-CUBE-AI configuration panel

– The Main tab provides an overview and the entry points to add or remove a network (respectively [Add
model] and [Delete model] buttons). [+] can be also directly used to add a network.

– The Platform Settings tab indicates the handle of the USART peripheral used to report the information
(AI System Performance application) or communicate with the host (AI validation application).

Figure 23. X-CUBE-AI platform setting panel

UM2526
Enabling the X-CUBE-AI component

UM2526 - Rev 8 page 17/69

4.3 Uploading a pretrained DL model file
From the Main tab, click on [Add model] or directly on [+] to open a new dedicated <model_name> configuration
wizard. Alternatively, if the model was previously provided through the MCU filter, click directly on the network tab
to open the NN Configuration pane.

Figure 24. NN configuration wizard

1. The text field entry is used to define the C name of the network (maximum 32 letters). This string is used
directly to generate the name of the embedded client inference API (refer to [10]). If only one network is
expected, the default network string name can be maintained.

2. The list box entries specify the DL toolbox used to export the DL model file and the associated file formats
(refer to Section 12 Supported toolboxes and layers for Deep Learning for details).
– Click on the [Browse..] button to upload the DL files from the host file system. For this hands-on lab, a

public Keras HAR model file is uploaded (saved model format).
3. Click on the [Analyze..] button to trigger a pre-analysis of the network reporting the dimensioning information

(system integration point of view). Note that the compression factor was set before to 4, else a warning
message pop-up is displayed as shown in Figure 25. If the Invalid network message box pops up,
select [Window]>[Outputs] for more details in the log console (refer to Section 13 Error handling).
The minimum RAM, Flash memory occupation, and original DL model complexity are updated (refer to
Section 4.5).
The reported Flash memory and RAM sizes correspond to the sum of the sizes used by the network and the
associated embedded library kernels.

Figure 25. Insufficient RAM/Flash memory message box

UM2526
Uploading a pretrained DL model file

UM2526 - Rev 8 page 18/69

Figure 26. Uploaded and analyzed DL model

Note: Additional debug/log information can be found in file C:\Users\<username>\.stm32cubemx\STM32CubeMX
.log or $HOME/.stm32cubemx/STM32CubeMX.log.

By clicking on the [Advanced Settings] button (), it is possible to configure the network to use external Flash
memory for the weights or external RAM for weights or activations, to select extended options, or to configure
custom layers. Refer to Advanced settings for details.
If the project is started from an STM32 STMicroelectronics board with mounted external Flash memory or RAM,
the configuration of the external Flash memory or RAM is automatic during code generation. It uses the board
BSP provided in the STM32Cube MCU Package to initialize the Flash memory or the RAM correctly. The external
Flash memory is used in the memory-mapped mode.

UM2526
Uploading a pretrained DL model file

UM2526 - Rev 8 page 19/69

https://www.st.com/stm32cube

4.4 Advanced settings
Figure 27 shows the content of the Advanced Settings window.

Figure 27. Advanced settings

Use of external RAM

Figure 28. Setting for external RAM

The external RAM can be used for
• the activation buffer (Use activation buffer option)
• the weights (Copy weight to RAM)
• or as one of the pools of the Memory Pools when the activation buffer is split into several segments of

physical memory

UM2526
Advanced settings

UM2526 - Rev 8 page 20/69

Use of external Flash memory

When [Use external flash] is selected, it is possible to:
• Generate the weights in a separate network_data.bin file and the code is generated to point at the

address of the beginning of the external Flash memory.

Figure 29. Weight separate file

The network_data.bin file must be programmed on the external Flash memory on the board manually
using a tool such as STM32CubeProgrammer (STM32CubeProg).
Note: Using automatic validation on the target causes the file network_data.bin to be automatically
programmed on the external Flash memory on the board.

• Split the weights between internal and external Flash memory using a linker script.

Figure 30. Weight memory split

In the table of tensor, choose to place the tensor in internal or external memory.
The [Propose placement] button automatically adjusts the weights between the internal and external
memory, trying to place first in the internal memory the weights layers with the biggest MACC while saving
some space for the library kernels and the program.

UM2526
Advanced settings

UM2526 - Rev 8 page 21/69

https://www.st.com/en/product/stm32cubeprog?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526

Use of memory pools

The code generator can generate the activation buffer into several memory pools. The tool can propose all the
available physical memories including external RAM if selected in the External RAM tab.

Figure 31. Memory pool setting

The allocation of pools is done in the order of the table. Move up and down the different pools to specify an
own allocation priority. It is also possible to restrict the maximum memory size allowed for use in each physical
memory.
When performing an analysis, validation, or generation, the actual used size for each pool is reported. The tool
also reports if some pools are not used.
The memory graph also displays the buffer allocation in each pool. The usage of memory pool may result in an
overall bigger size of memory used as it does not, in some cases, reuse a buffer space.
When using an external Flash memory or RAM on a Cortex®-M7-based STM32 microcontroller, the ICACHE and
DCACHE of the CORTEX_M7 CPU are enabled automatically, and the memory protection unit is configured to
give access to the external RAM or Flash memory automatically.

Extended options

Figure 32. Extended options

• Selecting the [Use activation buffer] checkbox places the activation buffers in the external RAM at the
address specified in the [Start Address] field
Optionally, it is possible to copy the weights to the external RAM at startup. In this case, the address where
to copy the weights is requested.

• When selecting the [Use activation buffer for input buffer] checkbox, the user does not need to allocate a
specific input buffer and can put the input data in the pre-allocated space of the activation buffer. Depending
on the size of the input data, the activation buffer may be larger, but overall less than the sum of the
activation buffer plus the input buffer separately.

• When selecting the [Use activation buffer for the output buffer] checkbox, the user does not need to
allocate a specific output buffer. It is allocated automatically in the activation buffer, saving the overall used
memory.

UM2526
Advanced settings

UM2526 - Rev 8 page 22/69

• Selecting [Split weights during code generation] creates one array of weights per layer in the generated <
network name>_data.c file. Each array can then be placed in different memory sections if needed using
a dedicated linker script.

• Selecting the [Generate relocatable network] checkbox activates the generation of a separated binary for
the network and the embedded Neural Network library. This binary can be placed anywhere on the target,
and the address is passed to the initialization function. This allows the update of the full network, weights,
and topology, without having to reprogram the entire application. As the embedded Neural Network library is
linked with the network, only the used kernels are in the final binary. This option can only be used in the case
of a single network.

• The [Force classifier validation output] informs “stm32ai validate” that the Neural Network is a classifier
and that a cross matrix of the results must be generated in the output.

• [Extra command line options] is a free-text field for adding any stm32ai command-line option that is not
directly taken into account by the graphical user interface.

Custom layers

Figure 33. Custom layers

Custom layers are a way to extend the current X-CUBE-AI capabilities. Specify the json file for configuring the
custom layer in that panel. Refer to the internal documentation on custom layer for implementation details.

4.5 Dimensioning information report
When a DL model is processed, the dimensioning system informations presented in Table 2 and Figure 34 are
reported.

Table 2. System informations reporting

Reported information Description

RAM Indicates the size (in bytes) of the expected RW memory chunk used to store the intermediate
inference computing values (.data or .bss section).

ROM/Flash Indicates the size (in bytes) of generated RO memory chunk to store the weight/bias parameters
after compression if requested (.rodata section).

Complexity
Indicates the functional complexity of the imported DL model in Multiply And Accumulate operations
(MACC). It includes also an approximation of the activation functions (expressed with the same
unity).

Figure 34. Integrated C-model (runtime-view)

UM2526
Dimensioning information report

UM2526 - Rev 8 page 23/69

Note: The minimum RAM and Flash size requirements listed in the AI summary do not take into consideration the
memory constraints of the user application (including the RAM to store the input and output tensors). Only
the DL model weights/bias and activation memory requirements are considered here. NN kernel functions and
specialized model code, including the minimum stack/heap size, are not considered also.

4.5.1 CPU cycles/MACC?
No theoretical relation is defined between the reported complexity and the real performance of the generated NN
C library (CPU cycles / MACC). Due to the variability of the targeted environments (including Arm® toolchain,
MCU and underlying subsystem memory setting, NN topology and layers, and optimizations applied), it is difficult
to estimate off-line an accurate CPU cycles/MACC vs. STM32 system settings. However, out-of-the-box, the
following rough estimations can be used (for a 32-bit floating-point C model):
• STM32 Arm® Cortex®-M4/M33: ~9 cycles/MACC
• STM32 Arm® Cortex®-M7:- ~6 cycles/MACC

The add-on “AI System Performance” test application has been specifically designed to report the factual on-
device performance (refer to Section 9 AI system performance application for details).

UM2526
Dimensioning information report

UM2526 - Rev 8 page 24/69

4.5.2 Generated C-model graph representation
Click on the [Show graph] button to show the main structural information of the uploaded DL model that are
considered by the C-code generator. Three graphs are available:
1. The internal representation of the imported DL model before applying the optimizations as shown in

Figure 35
2. The representation of the generated C code after all optimizations as shown in Figure 36
3. Click on a layer to get additional information on the layer as shown in Figure 37

Figure 35. Network before optimizations

UM2526
Dimensioning information report

UM2526 - Rev 8 page 25/69

Figure 36. C graph of the generated code

UM2526
Dimensioning information report

UM2526 - Rev 8 page 26/69

Clicking on a layer gives more information on the layer.

Figure 37. Layer information

UM2526
Dimensioning information report

UM2526 - Rev 8 page 27/69

The memory usage for activation and internal buffers is shown in Figure 38. This view shows the total amount of
memory needed to run the network. When the input or output buffers are put in the activation buffer, they do not
appear anymore in the user pool.

Figure 38. Memory usage

UM2526
Dimensioning information report

UM2526 - Rev 8 page 28/69

In the memory graph, a tooltip on a buffer shows the buffer details.

Figure 39. Buffer details as tooltip

UM2526
Dimensioning information report

UM2526 - Rev 8 page 29/69

In the same view, click on a layer to display its detailed information.

Figure 40. Layer detailed information

4.6 Validating the generated C model
Click on the [Validate on desktop] button to launch a validation process of the generated C model. According
to the availability of the custom data, different metrics are computed (refer to Section 6.2 Validation engine).
Note that this step is optional but preferable, in particular when a compression factor for instance is applied (refer
to Section 6.1 Graph flow and memory layout optimizer). When the reference or ground-truth output values
are provided with the associated input samples, the predicted values are used to calculate the metrics listed in
Table 3 (refer to [11] for more details).

Table 3. Metrics

Metric Description

ACC Classification accuracy

RMSE Root mean square error (classification accuracy)

MAE Mean absolute error

L2r L2 relative error

UM2526
Validating the generated C model

UM2526 - Rev 8 page 30/69

Figure 41. Validation status field

More detailed information is reported in the UI log console as shown in Figure 42. In particular the L2r error is also
reported for each generated C layer matching with an original layer.

Figure 42. Validate on desktop - log report

UM2526
Validating the generated C model

UM2526 - Rev 8 page 31/69

Note: At this step, the uploaded DL model is ready to be integrated in the generated IDE project.
The [Validate on target] option must be used only later when the targeted device is programmed with the special
test application “AI Validation”. It must be selected during the previous step (step 3 of Section 4.1 Adding
the X-CUBE-AI component). Reported information and usage are fully described in Section 10 AI validation
application.
The [Validate on target] button allows the user to run the validation on the target and optionally automatically
generate, compile, program and run a temporary project corresponding to the current network.

Figure 43. Validation on target

For the automatic compilation, programming and run to work, verify that the proposed communication port on
the target corresponds to the USART (UART, LPUART) connected to the ST-LINK for the Virtual COM port.
Optionally, it is possible to force the peripheral instance to use and the pins used for the transmit and receive
signals.
By default, the proposed toolchain is selected for the project. It can be updated if needed.
If a JTAG interface is used to program the MCU, the default debug interface must be changed.
When pressing [OK], a temporary project is generated, compiled, programmed and started on the target. Then
the regular validation of the network takes place.

UM2526
Validating the generated C model

UM2526 - Rev 8 page 32/69

4.7 Adding a new DL model
Multiple DL models can be imported. The total number is not limited by the wizard, however the initial limitation
is mostly related to the sizes of available RAM and Flash memory in the selected STM32 MCU device. Click on
the [+] button to import a new DL model and apply the same previous steps. The Main view summarizes the total
RAM and Flash memory occupations.

Figure 44. Main view with multiple networks

UM2526
Adding a new DL model

UM2526 - Rev 8 page 33/69

5 Generating, building and programming

5.1 Generating the IDE project
The following steps show in sequence the classical STM32CubeMX process to generate the IDE project without
addition of any specific AI extension:
1. Click on the Project Manager view.
2. Set the project location and name.
3. Select one Toolchain and IDE (such as EWARM for IAR Systems IAR Embedded Workbench®, Keil®

MDK-ARM, or STM32CubeIDE).
4. Verify that the heap/stack size is properly set to minimize in a first time the possible overflow (2 Kbytes

minimum of heap is expected for the “AI Validation” test application).

Figure 45. Project settings view for IDE Code generator

UM2526
Generating, building and programming

UM2526 - Rev 8 page 34/69

https://www.st.com/en/product/stm32cubeide?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526

5. Click on the [GENERATE CODE] button to generate the code corresponding to the current project
configuration (including the IDE project files).
During the generation of the IDE project, the message box shown in Figure 46 can pop up if the user has
selected and enabled an add-on AI application and forgotten to set the expected platform dependency (such
as USART handle). Refer to Section 4.1 Adding the X-CUBE-AI component for details.

Figure 46. AI peripheral not fully configured

At this stage, the STM32CubeMX UI application can be closed. It is possible to re-open it later with the <pro
ject_name>.ioc file to enable and set a new peripheral, a middleware component, or both, or perform the
Validation on target process.

5.2 Building and programming
When the IDE project is successfully generated by the STM32CubeMX tool, the standard build process is used to
build and flash the STM32 board development kit or customer board:
1. Launch the IDE application and open the generated project file
2. Build and flash the firmware image. If the AI test application has been selected, no code modification

or update is expected. Otherwise, user AI-based application code must be added to use the generated
inference C API.

UM2526
Building and programming

UM2526 - Rev 8 page 35/69

https://www.st.com/en/product/stm32cubemx?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526

6 X-CUBE-AI internals

6.1 Graph flow and memory layout optimizer
The C-code generator optimizer engine seeks to optimize memory usage (RAM & ROM) against inference
computing time (power consumption is also considered). It is based on a dataset-less approach, which means
that no trained valid or test dataset is requested to apply the compression and optimization algorithms (no
re-trained/refined weights/bias stage is expected to preserve the accuracy of the initial model).
• Weight/bias compression (targeted factor: none, x4, x8)

– Only applicable for dense (or fully-connected) layer type
– Weight-sharing-based algorithm is applied (K-means clustering)
– If “none”, the initial DL model accuracy is guaranteed. The residual error (~10-08) is related to the

native-model floating-point 64-bit size against the 32-bit C-floating-point size used. For large networks
however, 10-06 is more common.

Figure 47. Weight/bias compression

The advantage of this approach is to have a quick compression process, but the final result is not lossless
and the global accuracy can be impacted. A “Validation” process of the generated C model is provided as a
mitigation to evaluate the generated error (refer to Section 6.2).

• Operation fusing
– Merge two layers to optimize data placement and associated computing kernel. Some layers

(like “Dropout”,“ Reshape”) are removed during the conversion or optimization, and others (like
nonlinearities and pooling after a convolutional layer) are fused in the previous layer. The effect is
that the converted network has often a lower number of layers compared with the original network.

Figure 48. Operation fusing

UM2526
X-CUBE-AI internals

UM2526 - Rev 8 page 36/69

• Optimal activation/working memory: A R/W chunk is defined to store temporary hidden layer values
(outputs of the activation operators). It can be considered as a scratch buffer used by the inference function.
The activation memory is reused across different layers. As a result, the activation buffer size is defined by
the maximum memory requirements of two consecutive layers.

Figure 49. Optimal activation/working buffer

6.2 Validation engine
A simple and quick validation mechanism is provided to compare the accuracy of a generated model and
uploaded DL model from a numerical standpoint. Both models are fed with the same input tensors (fixed random
inputs or custom dataset; refer to [11]). To be more accurate, as detailed in [11], additional metrics are reported to
evaluate the generated C model. The X-CUBE-AI Expansion Package provides an inference DL executing engine
for all supported DL frameworks. Note that it is still possible to consider the generated optimized C model even
if the tool reports a failed validation. The performance may not be aligned with the original Python™ model but
the C-model can still be used. Further inspection is required, using, for example, a custom dataset and NN output
tracing.

Figure 50. Validation flow overview

UM2526
Validation engine

UM2526 - Rev 8 page 37/69

Two executing modes are provided:
• Validation on desktop: this mode allows the comparison of the DL model with its generated X86 C model. It

runs on the host. The related output is illustrated in Section 4.6 Validating the generated C model.
• Validation on target: this mode compares the DL model with the C model that runs on the targeted device.

It requires a special AI test application that embeds the generated NN libraries and the COM agent to
communicate with the host system. Output and usage are illustrated in Section 10 AI validation application.

Validation on target features:
• Automatic detection of the connected STM32 boards
• The signature of the embedded generated C model is checked with the validated DL model
• The L2 error is only calculated on the last output layer (because of the COM speed to upload the data)
• Additional information is reported such as inference executing time by layer or others (refer to Section 10 AI

validation application)

Figure 51. Validation on target

UM2526
Validation engine

UM2526 - Rev 8 page 38/69

Specific attention to custom data

To have an accurate validation process or more significant metrics, it is important to feed the original model and
the generated C model with the closest possible data to the validating dataset used to to test the original model.
If the raw dataset has been pre-processed, the user must build a representative dataset with a sub-set of these
pre-processed data.

Figure 52. Representative dataset

This recommendation also applies to the output data. The computation of the metrics are based on the element-
wise operations between the provided references and the predicted values. For a classifier (one or multiple
classes) for example, one-hot encoding data can be provided. Integer Encoding is not supported.

UM2526
Validation engine

UM2526 - Rev 8 page 39/69

Figure 53 illustrates a typical example, where a particular attention is requested. The STM32Cube function pack
for computer vision (FP-AI-VISION1) provides an advanced debug mode, which allows the injection or dump of
images. If the user wants to validate its pretrained model with the X-CUBE-AI validation engine and compare
with the deployed model, he must ensure that the format and the applied pre-processing are similar to have the
more accurate validation metrics. In this use case, to take the pre-processing done by the pack into account, it is
recommended to create a set of representative pre-processed images to test different models off-line, or to refine
an existing pretrained model.

Figure 53. Example with the function pack for the computer vision

UM2526
Validation engine

UM2526 - Rev 8 page 40/69

https://www.st.com/en/product/fp-ai-vision1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526
https://www.st.com/en/product/x-cube-ai?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526

7 Generated STM32 NN library

Only the specialized (DL model dependent) C files are generated for each imported DL model. The name of these
files are prefixed with the network name provided by the user (refer to Section 4.3 Uploading a pretrained DL
model file). They are based on an internal and private API implemented by the network_runtime.a library:
• <name>.c and <name>.h files for the topology
• <name>_data.c and <name>_data.h files for the weights/bias

Note: Generated specialized data and network files are common to all toolchains and STM32 MCU series.
The network_runtime.a library or NN computing kernel library is provided as a static library:
• All unused symbols and methods are removed at link stage
• Not based on a network-graph interpreter approach (like ARM-NN, lite deployment environment) since it is

not optimal for devices with limited memory resources.

7.1 Firmware integration
Figure 54 illustrates the MCU integration model and view (including run-time dependencies) of the generated
STM32 NN package.

Figure 54. MCU integration model and view

For the application layer, the exported NN library is considered as a “black box” or self-content object. Only the
specialized files, network topology (<name>.c and <name>.h files), and weights/bias parameters (<name>_data.c
and <name>_data.h files) are provided as source files. They are based on a common network run-time library
(network_runtime.a). The dependencies with the system run time are minimal:
• standard libc memory manipulation functions (memcpy, memset). They are generally provided by the MCU

toolchain.
• CMSIS library to support the Cortex®-M optimized operations (FPU and DSP instructions). It is part of the

STM32 HAL package.
• malloc/free is currently expected to support the “Recurrent-type” layer (“GRU” and “LSTM” layers). In

future releases, the use of a static buffer allocation approach is planned instead. Performance impact is
mitigated by the number of recurrent cell units and associated processing time.

UM2526
Generated STM32 NN library

UM2526 - Rev 8 page 41/69

• A mathematical library (with DSP/FPU support) is also requested to support the expf, powf , tanhf, and
sqrtf functions.

• A minimal stack is requested (real value can be measured with the “AI system performance” application;
refer to Section 9 AI system performance application).

Note: All external dependencies must be solved during the end-user link stage (firmware image generation).
Activation memory buffers can be allocated dynamically in the heap or as a global array (.bss and .data
sections). Refer to the ai_<name>_init() function to show how to pass the weights/bias buffer and activation
memory buffers to the NN core library.

7.2 Library source tree view
When the IDE project is created, the network runtime library is exported into sub-folder <project_name>/Mi
ddlewares/ST/AI/. Specialized or dedicated NN files are stored in standard STM32CubeMX Inc and Src
sub-folders. Requested specific files from the CMSIS-DSP libraries are also added.

```
<project_name>
    |- Inc
    |     |- app_x-cube-ai.h /* entry points - MX_X_CUBE_AI_xx() fcts */
    |     |- bsp_ai.h        /* BSP AI adapt. for AI validation/systemperf application */
    |     |- constants_ai.h  /* BSP constant AI definition */
    |     |- <name_1>.h      /* specialized NN files */
    |     |- <name_1>_data.h
    |     |- <name_2>.h
    |     \- ...    
    |- Src
    |     |- app_x-cube-ai.c 
    |     |- <name_1>.c      /* specialized NN files */
    |     |- <name_1>_data.c 
    |     \- ...
    | ...
    \--Middlewares
        \- ST/AI
             |-- include
            |    \- *.h                /* Internal/private AI headers */
             |-- lib
             |    \- network_runtime.a /* generic run-time library */   
            \-- Application
                 \- SystemPerformance       /* generic sample application */
                     |- Inc
                     |   \- aiSystemPerformance.h
                     \- Src
                         \- aiSystemPerformance.c
```

The file name network_runtime.a depends on the X-CUBE-AI version and IDE used, such as
NetworkRuntime410_CM4_GCC.a or NetworkRuntime410_CM4_IAR.a.

7.3 Multi-network inference API
The app_x-cube-ai.c and app_x-cube-ai.h files provide also a generic multi-network inference API, which can be
used by the AI client application. It is very close to the native embedded inference client API (refer to [10]); only
the create() function is different. The C-name string of the network must be passed to create the instance of
the underlying network. This interface is mainly used by the add-on AI test applications to have a generic way to
address the different embedded networks.

UM2526
Library source tree view

UM2526 - Rev 8 page 42/69

/* @file - app_x-cube-ai.h/.c - GENERATED CODE by STM32Cube MX */
 ...
const char* ai_mnetwork_find(const char *name, ai_int idx);

ai_error ai_mnetwork_create(const char *name, ai_handle* network, const ai_buffer*
network_config);

ai_bool ai_mnetwork_get_info(ai_handle network, ai_network_report* report);
ai_error ai_mnetwork_get_error(ai_handle network);
ai_handle ai_mnetwork_destroy(ai_handle network);
ai_bool ai_mnetwork_init(ai_handle network, const ai_network_params* params);
ai_i32 ai_mnetwork_run(ai_handle network, const ai_buffer* input, ai_buffer* output);

7.4 Re-entrance and thread safety considerations
No internal synchronization mechanism is implemented to protect the entry points against concurrent accesses.
If the API is used in a multi-threaded context, the protection of the instantiated NN(s) must be guaranteed by the
application layer itself.
To minimize the usage of the RAM, a same activation memory chunk (SizeSHARED) can be used to support
multiple network. In this case, the user must guarantee that an on-going inference execution cannot be
preempted by the execution of another network.

SizeSHARED = MAX(AI_<name>_DATA_ACTIVATIONS_SIZE) for name = “net1” … “net2”

Note: If the preemption is expected for real-time constraint or latency reasons, each network instance must have its
own and private activation buffer.

7.5 Code and data placement considerations
For the current STM32 memory architecture (STM32L4/STM32F4/STM32F3-based and STM32F7/STM32H7-
based), no specific data or code placement is expected for performance reason. The Flash ART peripheral and
the Arm® core subsystem cache (Cortex®- M7-based architecture) efficiently limit memory latency side effects.
NN code (.text section) and RO data (.rodata section) can be placed in the internal Flash memory area. RW data
(.data and .bss sections) must be placed in the embedded SRAM. If the client stack is used; it must be placed in a
zero-wait-state memory.

Note: There is no memory retention requirement on the activation buffer. It can be really considered as a scratch or
working buffer. Between two inferences, the buffer can be reused for preprocessing purpose for example, or the
associated memory device can be switched off when the system goes into Deep Sleep.

7.6 Debug considerations
The library must be considered as an optimized black box in binary format (sources files are not deliveries). There
is no support for run-time internal data or state introspection. Mapping and port of the NN is guaranteed by the
X-CUBE-AI generator. Some integration issues can be highlighted by the ai_<name>_get_error() function.

UM2526
Re-entrance and thread safety considerations

UM2526 - Rev 8 page 43/69

8 Embedded inference client API

To use the generated NN code, a simple embedded inference client API is generated (see the ai_<name>_XX()
functions in Figure 54). It is part of the <project_name>/Src/<name>.h file. All functions and macros are
generated according to the C-network name provided. For usage and detailed description, refer to [10].

UM2526
Embedded inference client API

UM2526 - Rev 8 page 44/69

9 AI system performance application

The AI system performance application is a self and bare-metal on-device application, which allows the out-of-
the-box measurement of the critical system integration aspects of the generated NN. The accuracy performance
aspect is not and cannot be considered here. The reported measurements are:
• CPU cycles by inference (duration in ms, CPU cycles, CPU workload)
• Used stack and used heap (in bytes)

Execute the following series of steps in sequence to run the application:
1. Open and configure a host serial terminal console connected via a COM port (usually supported by a Virtual

COM port over a USB connection, such as an ST-LINK/V2 feature).
2. Set the COM setting. It must be aligned with the setting of the STM32 USART (refer to

Section 3.2 Hardware and software platform settings):
– 115200 bauds
– 8 bits
– 1 stop bit
– No parity

3. Reset the board to launch the application
When the application is running, typing p or P in the console suspends the main loop. The application embeds a
minimal interactive console, which supports the following commands:

Possible key for the interactive console:
 [q,Q] quit the application
 [r,R] re-start (NN de-init and re-init)
 [p,P] pause
 [h,H,?] this information
 xx continue immediately

9.1 System run-time information
Figure 55 and Figure 56 show the first part of the log, which indicates the useful information of the STM32
run-time or executing environment for the Keil® and Atollic IDEs respectively: device ID, system clock value, used
toolchain, and others.

Figure 55. System run-time information - Keil® IDE

UM2526
AI system performance application

UM2526 - Rev 8 page 45/69

Figure 56. System run-time information - Atollic IDE

Note: To retrieve these informations in the log, type r or R in the console during the execution of the main loop.

9.2 Embedded C-model network information
This second part shown in Figure 57 indicates the main static characteristics of the generated NN(s). In particular,
it provides the RAM/Flash size (in bytes, respectively activation/weights fields) and the logical complexity (MACC,
complexity field). Shape definitions of the input and output tensors are also reported. These informations are
available also by the client application code through the ai_<name>_get_info() client API function.

Figure 57. C-model network information

UM2526
Embedded C-model network information

UM2526 - Rev 8 page 46/69

Note: To retrieve these informations in the log, type r or R in the console during the execution of the main loop.

9.3 Embedded C-model run-time performance
As illustrated in Figure 58 and Figure 59, the last part of the log (main loop) reports the measured out-of-the-box
system performance. Random inputs are injected in the network to measure the number of CPU cycles by
inference (CPU cycles). The CPU workload and cycles/MACC are deduced from this value. During the
measurement, the IRQs are masked.
• duration indicates the duration in ms for one inference.
• CPU cycles indicates the number of CPU cycles for one inference.
• CPU workload indicator corresponding to the associated CPU workload during 1 s.
• cycles/MACC is the number of CPU cycles by MACC operation.

Figure 58. C-model run-time performance

Figure 59. C-model run-time performance with heap and stack checking

Note: ”used heap” indicates the number of malloc() and cumulated allocated size (respectively free()) requested
during the execution of all inferences. The counter is not reset between two inferences or test iterations to detect
hypothetic memory leak. In the present case, the minimum heap size is 29568 / #iter = ~2Kbytes.

Caution: Today, the heap monitor is only supported for a GCC-based environment.

UM2526
Embedded C-model run-time performance

UM2526 - Rev 8 page 47/69

10 AI validation application

The AI validation application is a self and bare-metal on-device application, which supports the Validation on
device as presented in Section 6.2 Validation engine. It provides a USART-based interface with the host to
export the inference API.
The whole AI validation application is either generated and programmed as a normal IDE project, or compiled
automatically and downloaded from STM32CubeMX itself (refer to Figure 60).
If this application is not generated automatically, the following steps are requested:
1. When the board is programmed, reset or restart it.
2. Reopen (if closed) the ioc file with which firmware was generated.
3. Go to the AI configuration panel and open the <network_name> tab, which must validated.
4. Click on the [Validation on target] button to start the validation process. Before clicking on the [OK] button,

the user has the possibility to indicate the host COM port that is used as shown in Figure 60. Otherwise, all
available COM ports are discovered to detect a valid connected STM32 board (the first board found is used).

Figure 60. Host COM port selector for validation on device

As for Validation on desktop, the final result is reported in the [Validation status] field. More detailed information
is reported in the UI log console.

10.1 System runtime information
The first part of the reported log shown in Figure 61 indicates the main system information: device ID, clock
frequency, memory subsystem configuration, list of the embedded networks. For the validated network, shape-in
and shape-out tensor description is provided as well as used AI tools versions.

Figure 61. System runtime information

UM2526
AI validation application

UM2526 - Rev 8 page 48/69

10.2 Embedded C-model runtime performance
The second part of the log shown in Figure 62 reports the out-of-the-box system performance measurements
(duration average executing time by inference). cycles/MACC is deducted from the duration value. During
the measurement, the IRQs are masked.
• duration indicates the duration in ms for one inference.
• CPU cycles indicates the number of CPU cycles for one inference.
• cycles/MACC is the number of CPU cycles by MACC operation.

Figure 62. C-model runtime performance

10.3 Layer-by-layer runtime performance
The next part of the log shown in Figure 63 provides the additional information about the generated C model:
name and type of the implemented C layer (Clayer / id / desc), output shape (oshape), and average executing
time by inference (ms).

Figure 63. Layer-by-layer results - Validation on target

UM2526
Embedded C-model runtime performance

UM2526 - Rev 8 page 49/69

10.4 Final result for validation on target
The last part of the log shown in Figure 64 provides the final result of the validation process. It is similar
to the result of the validation on desktop but only the L2 error on the last layer is reported (refer to
Section 6.2 Validation engine).

Figure 64. Final report for validation on target

10.5 Returned error during the connection
The following USART setting is used by default:
• 8 bits
• 1 stop bit
• No parity
• 115200 bauds

If redefined by the user, the baud rate must be kept aligned across all settings (refer to Section 3.2 Hardware
and software platform settings and Figure 60. Host COM port selector for validation on device).

10.5.1 Error: no connected board, invalid firmware, or board restart needed
Indicates that no board is connected or can be found, or that firmware is not the expected “AI Validation” firmware.
This error can also indicate an incoherent firmware state, in which case the board must be restarted.
To check that the firmware is correctly programmed, open a host serial terminal console at boot time, which
generates an ASCII-based log. Do not forget to close the connection before to launching the Validation on target
process again.

UM2526
Final result for validation on target

UM2526 - Rev 8 page 50/69

Figure 65. AI valid - Initial log

10.5.2 Error: “network_name” is not a valid network
Indicates that the expected C model identified by its name is not available in the connected board. See the UI log
console (Outputs window) for more details.

10.5.3 Error: the embedded STM32 model does not match the C model
Indicates that the signature of the generated C model is not coherent with the expected model. The parameters
used to check the signature are:
• RAM/ROM size
• MACC
• Number of nodes
• Tool versions

See the UI log console (Outputs window) for more details.

UM2526
Returned error during the connection

UM2526 - Rev 8 page 51/69

11 AI template application

When selected, the generated IDE project is not really a complete AI template application with an example of
a basic AI application to use the generated C models. aiSystemPerformance.h and aiSystemPerformance.c files
represent a good example for this purpose. Only the specific generated files are generated. This can be used
as started point to develop an initial bare-metal application with two simple entry points (init and process
functions). Refer to [10] for details.

UM2526
AI template application

UM2526 - Rev 8 page 52/69

12 Supported toolboxes and layers for Deep Learning

The X-CUBE-AI core currently supports the following DL toolboxes:
• Keras: //keras.io/
• TensorFlow™ Lite: www.tensorflow.org/lite/
• ONNX: //onnx.ai/

Note: TensorFlow is a trademark of Google Inc.
For each toolbox, only a subset of all possible layers and layer parameters are supported, depending on the
expressive power of the network C API, and on the parser for the specific toolbox. Supported configurations are
detailed in [7], [8] and [9].

UM2526
Supported toolboxes and layers for Deep Learning

UM2526 - Rev 8 page 53/69

https://keras.io/
https://www.tensorflow.org/lite/
https://onnx.ai/

13 Error handling

The X-CUBE-AI core handles a range of different errors and reports them to the user as detailed in [6].

UM2526
Error handling

UM2526 - Rev 8 page 54/69

14 FAQs

14.1 Log files for debug purpose?
When a “validation on target” process is performed, all messages exchanged with the target (including the data)
are stored in a dedicated log file:
C:\Users\<username>\.stm32cubemx\ai_stm32_msg.log
If a validation or generation process fails, additional debug/log info is available in file:
C:\Users\<username>\.stm32cubemx\STM32CubeMX.log

14.2 Unable to compile file “arm_dot_prod_f32.c”
The compilation of arm_dot_prod_f32.c may fail when the IDE project files are regenerated:

compiling arm_dot_prod_f32.c...
../Drivers/CMSIS/Include/arm_math.h(314): error: #35:
#error directive: "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4,
ARM_MATH_CM3, ARM_MATH_CM0PLUS or ARM_MATH_CM0"
#error "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4, ARM_MATH_CM3,
ARM_MATH_CM0PLUS or ARM_MATH_CM0"
../Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_dot_prod_f32.c: 0 warnings, 1 error

According to the targeted STM32 device, the following C defines must be redefined in the project setting:

ARM_MATH_CM7,__FPU_PRESENT=1

14.3 Used heap or stack: disabled or not yet supported
This log indicates that the stack (respectively heap) monitor is explicitly disabled or not yet implemented for the
toolchain used.

Table 4. Heap and stack monitoring support

Toolchain Stack monitor Heap monitor Note

GCC Supported Supported STM32CubeIDE

IAR Systems EWARM 8.x Supported Not implemented -

Keil® MDK-ARM Not implemented Not implemented -

Example of heap and stack monitoring activation:

/* @file: aiSystemPerformance.c */
...
#if defined(__GNUC__)
#define _APP_STACK_MONITOR_ 1
#define _APP_HEAP_MONITOR_ 1
#elif defined (__ICCARM__)
#define _APP_STACK_MONITOR_ 1
#define _APP_HEAP_MONITOR_ 0
#else
#define _APP_STACK_MONITOR_ 0
#define _APP_HEAP_MONITOR_ 0
#endif
...

UM2526
FAQs

UM2526 - Rev 8 page 55/69

https://www.st.com/en/product/stm32cubeide?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526

14.4 Why is “used heap” always zero?
For GCC-based projects only:

used heap : 0:0 0:0 (req:allocated,req:released) cfg=0

Such a result is not necessarily a problem. Most of the network_runtime.a library is based on a preallocated
R/W buffer scheme (activation buffers). For some specific layers (recurrent layer type), the current implementation
requests to allocate dynamically a part of these work buffers through the malloc() function.
The heap monitor is based on a toolchain specific mechanism, which allows the wrapping of the
system malloc() and free() functions. To enable this wrapping, the -Wl,--wrap=malloc -Wl,--
wrap=freemiscellaneous linker options must be set in the build system as shown in Figure 66.

Figure 66. Linker options to enable the heap monitor

14.5 Formatted floating-point numbers are empty for a GCC-based project
The following link option must be added to output a formatted floating-point number:

-u _printf_float

14.6 CPU cycles/MACC?
Refer to Section 4.5.1 CPU cycles/MACC? and Section 9 AI system performance application.

14.7 Is it necessary to enable or configure a TIMER peripheral?
This is not necessary. The mechanism to measure the number of CPU cycles by inference uses a dedicated
Arm® Cortex®-M debug unit (DWT: Data Watch-point and Trace unit), which is available on all supported STM32
devices. It uses a free-running counter that is clocked by the CPU clock (HCLK system clock).

14.8 How to update only the exported NN library in my generated project?
This is straightforward if the STM32CubeMX design guide lines are applied (/* USER CODE BEGIN*/, /*...
END*/ tags) for the changes to the exported and generated files. The <project_name>.ioc file can be directly
re-opened to upload a new NN model and to update the IDE project.

UM2526
Why is “used heap” always zero?

UM2526 - Rev 8 page 56/69

14.9 Is it possible to export an NN library for a non-STM32CubeMX-based project?
Since the exported NN library is located in a well-defined and self-content sub-folder (refer to
Section 7 Generated STM32 NN library), this AI sub-folder can be fully copied in the source tree of the
destination project:
1. Create a new dummy STM32CubeMX project for the user’s STM32 MCU device.
2. Generate the IDE project for the user’s toolchain/IDE. This step is requested to include the correct network

_runtime.a library, which is toolchain- and Arm®-Cortex®-M-architecture dependent.
3. Copy the generated AI sub-folder in the source tree of the new project.
4. Add the network.c and network_data.c files, and the network_runtime.a library to the system build

and update the C/C++ compiler and linker options as described in Section 7 Generated STM32 NN library.
5. Return to step 1 to update and evaluate a modified NN model.

14.10 Command-line interface?
A complete command-line interface is provided in the X-CUBE-AI Expansion Package (refer to [6]).

UM2526
Is it possible to export an NN library for a non-STM32CubeMX-based project?

UM2526 - Rev 8 page 57/69

https://www.st.com/en/product/x-cube-ai?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526

15 References and documentation

15.1 References used in this user manual

Table 5. References

ID Description Link

[1] NUCLEO-F746ZG development kit www.st.com/en/product/nucleo-f746zg

[2] STM32CubeIDE www.st.com/stm32cubeide

[3] IAR Embedded Workbench® IDE - ARM v8.x
or v7.x

www.iar.com/iar-embedded-workbench

[4] µVision® V5.25.2.0 - Keil® MDK-ARM
Professional Version

www.keil.com

[5] STM32CubeMX - initialization code generator www.st.com/en/product/stm32cubemx

[6] X-CUBE-AI stm32ai command-line
interface

Documentation embedded in X-CUBE-AI Expansion Package in
Documentation/command_line_interface.html(1)

[7] X-CUBE-AI Keras toolbox support
Documentation embedded in X-CUBE-AI Expansion Package in
Documentation/supported_ops_keras.html(1)

[8] X-CUBE-AI ONNX toolbox support
Documentation embedded in X-CUBE-AI Expansion Package in
Documentation/supported_ops_onnx.html(1)

[9] X-CUBE-AI TensorFlow™ Lite toolbox support
Documentation embedded in X-CUBE-AI Expansion Package in
Documentation/supported_ops_tflite.html(1)

[10] X-CUBE-AI embedded inference client API
Documentation embedded in X-CUBE-AI Expansion Package in
Documentation/embedded_client_api.html(1)

[11] X-CUBE-AI evaluation report and metrics
Documentation embedded in X-CUBE-AI Expansion Package in
Documentation/evaluation_metrics.html(1)

[12] X-CUBE-AI quantized model and quantize
command

Documentation embedded in X-CUBE-AI Expansion Package in
Documentation/quantization.html(1)

1. Refer to Section 15.2 Access to X-CUBE-AI in-package documentation.

15.2 Access to X-CUBE-AI in-package documentation
Follow one of the two solutions proposed below for access to the documentation available in the X-CUBE-AI
Expansion Package:
1. Direct access through the menu:

a. Click [Help]>[X-CUBE-AI Documentation] as shown in Figure 67.

Figure 67. Direct menu access to in-package documentation

UM2526
References and documentation

UM2526 - Rev 8 page 58/69

https://www.st.com/en/product/nucleo-f746zg?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526
https://www.st.com/en/product/nucleo-f746zg?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526
https://www.st.com/en/product/stm32cubeide?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526
https://www.st.com/stm32cubeide
https://www.iar.com/iar-embedded-workbench/
http://www.keil.com/
https://www.st.com/en/product/stm32cubemx?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526
https://www.st.com/en/product/stm32cubemx?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526
https://www.st.com/en/product/x-cube-ai?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526
https://www.st.com/en/product/x-cube-ai?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526
https://www.st.com/en/product/x-cube-ai?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526
https://www.st.com/en/product/x-cube-ai?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526
https://www.st.com/en/product/x-cube-ai?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526
https://www.st.com/en/product/x-cube-ai?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526
https://www.st.com/en/product/x-cube-ai?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2526

2. Access through X-CUBE-AI modes:
a. Hover the cursor over one of the X-CUBE-AI modes and click on [details and documentation] as

shown in Figure 68.

Figure 68. In-package documentation access through X-CUBE-AI modes (1 of 2)

b. Click on [SW Pack documentation] as shown in Figure 69.

Figure 69. In-package documentation access through X-CUBE-AI modes (2 of 2)

c. A browser window opens that lists the available X-CUBE-AI documentation as shwon in Figure 70.

UM2526
Access to X-CUBE-AI in-package documentation

UM2526 - Rev 8 page 59/69

Figure 70. In-package documentation index

UM2526
Access to X-CUBE-AI in-package documentation

UM2526 - Rev 8 page 60/69

Revision history

Table 6. Document revision history

Date Revision Changes

15-Jan-2019 1 Initial release.

19-Jul-2019 2

Updated for X-CUBE-AI 4.0.0:
• added quantization
• added the command-line interface
• added the support of TensorFlow™ Lite

Simplified the user manual referring to documents in the Expansion Package
for:
• Section 8 Embedded inference client API
• Section 11 AI template application
• Section 12 Supported toolboxes and layers for Deep Learning
• Section 13 Error handling

11-Oct-2019 3

Updated for X-CUBE-AI 4.1.0:
• added the support of the quantization model for TensorFlow™ Lite
• added the support of external memories for validation

Simplified the user manual:
• removed Section 14.2 Custom data set file format?
• added Section 15.2 explaining how to get access to in-package

documentation

6-Jan-2020 4

Updated for X-CUBE-AI 5.0.0:
• added the support of the quantization model for ONNX
• added the use of the activation buffer for the input buffer
• added the direct menu access to in-package documentation

8-Jun-2020 5

Updated for X-CUBE-AI 5.1.0:
• updated screenshots
• added split-weight option in Section 4.3 Uploading a pre-trained DL

model file
• added memory usage graphs and layer information in:

– Section 4.4.2 Generated C-model graph representation
• updated toolboxes in:

– Section 1.2 How does X-CUBE-AI complement STM32Cube?
– Section 14.4 Used heap or stack: disabled or not yet supported

1-Oct-2020 6

Updated for X-CUBE-AI 5.2.0:
• updated screenshots

• support for the STM32L5 Series based on the Cortex®-M33 core
• updated the advanced settings for external memories in Section 4.3

Uploading a pre-trained DL model file

4-Mar-2021 7

Updated for X-CUBE-AI 6.0.0:
• updated screenshots
• added STM32WL Series compatibility
• updated Section 4.3 Uploading a pre-trained DL model file
• created Section 4.4 Advanced settings
• updated Section 6.2 Validation engine and added Specific attention for

custom data
• updated Section 15.1 References used in this user manual
• removed Section 14.2 Multi-network limitations?

UM2526

UM2526 - Rev 8 page 61/69

Date Revision Changes

4-Jan-2022 8

Updated for X-CUBE-AI 7.1.0:
• added STM32F0 Series, STM32G0 Series, STM32L0 Series, and

STM32U5 Series compatibility
• Updated Section 1.6 Prerequisites
• Updated Section 4.4 Advanced settings for memory settings and

extended options

UM2526

UM2526 - Rev 8 page 62/69

Contents

1 General information .2

1.1 What is STM32Cube?. 2

1.2 How does X-CUBE-AI complement STM32Cube? . 2

1.3 X-CUBE-AI core engine . 3

1.4 STM32CubeMX extension . 5

1.5 Acronyms, abbreviations, and definitions. 6

1.6 Prerequisites . 6

1.7 License . 6

2 Installing X-CUBE-AI. .7

3 Starting a new STM32 AI project .9

3.1 MCU and board selector . 9

3.2 Hardware and software platform settings. 11

3.2.1 Increase or set the CPU and system clock frequency . 12

3.2.2 Set the MCU memory subsystem . 13

3.2.3 CRC . 14

4 X-CUBE-AI configuration wizard .15

4.1 Adding the X-CUBE-AI component . 15

4.2 Enabling the X-CUBE-AI component . 16

4.3 Uploading a pretrained DL model file . 18

4.4 Advanced settings. 20

4.5 Dimensioning information report . 23

4.5.1 CPU cycles/MACC? . 24

4.5.2 Generated C-model graph representation . 25

4.6 Validating the generated C model . 30

4.7 Adding a new DL model . 33

5 Generating, building and programming .34

5.1 Generating the IDE project. 34

5.2 Building and programming . 35

6 X-CUBE-AI internals .36

UM2526
Contents

UM2526 - Rev 8 page 63/69

6.1 Graph flow and memory layout optimizer. 36

6.2 Validation engine . 37

7 Generated STM32 NN library .41

7.1 Firmware integration . 41

7.2 Library source tree view . 42

7.3 Multi-network inference API . 42

7.4 Re-entrance and thread safety considerations . 43

7.5 Code and data placement considerations . 43

7.6 Debug considerations . 43

8 Embedded inference client API .44

9 AI system performance application .45

9.1 System run-time information . 45

9.2 Embedded C-model network information . 46

9.3 Embedded C-model run-time performance . 47

10 AI validation application .48

10.1 System runtime information . 48

10.2 Embedded C-model runtime performance . 49

10.3 Layer-by-layer runtime performance. 49

10.4 Final result for validation on target . 50

10.5 Returned error during the connection . 50

10.5.1 Error: no connected board, invalid firmware, or board restart needed 50

10.5.2 Error: “network_name” is not a valid network . 51

10.5.3 Error: the embedded STM32 model does not match the C model 51

11 AI template application .52

12 Supported toolboxes and layers for Deep Learning. .53

13 Error handling .54

14 FAQs .55

14.1 Log files for debug purpose? . 55

14.2 Unable to compile file “arm_dot_prod_f32.c” . 55

14.3 Used heap or stack: disabled or not yet supported. 55

14.4 Why is “used heap” always zero? . 56

UM2526
Contents

UM2526 - Rev 8 page 64/69

14.5 Formatted floating-point numbers are empty for a GCC-based project 56

14.6 CPU cycles/MACC? . 56

14.7 Is it necessary to enable or configure a TIMER peripheral? . 56

14.8 How to update only the exported NN library in my generated project?. 56

14.9 Is it possible to export an NN library for a non-STM32CubeMX-based project? 57

14.10 Command-line interface? . 57

15 References and documentation .58

15.1 References used in this user manual . 58

15.2 Access to X-CUBE-AI in-package documentation . 58

Revision history .61

Contents .63

List of tables .66

List of figures. .67

UM2526
Contents

UM2526 - Rev 8 page 65/69

List of tables
Table 1. Definition of terms used in this document . 6
Table 2. System informations reporting . 23
Table 3. Metrics . 30
Table 4. Heap and stack monitoring support . 55
Table 5. References . 58
Table 6. Document revision history . 61

UM2526
List of tables

UM2526 - Rev 8 page 66/69

List of figures
Figure 1. X-CUBE-AI core engine . 3
Figure 2. X-CUBE-AI overview . 4
Figure 3. Quantization flow . 4
Figure 4. X-CUBE-AI core in STM32CubeMX. 5
Figure 5. Managing embedded software packs in STM32CubeMX . 7
Figure 6. Installing X-CUBE-AI in STM32CubeMX . 7
Figure 7. X-CUBE-AI in STM32CubeMX . 8
Figure 8. Creating a new project. 9
Figure 9. AI filter. 9
Figure 10. AI filter with default option . 10
Figure 11. AI filter with compression x4 . 10
Figure 12. NUCLEO-F746ZG board selection . 11
Figure 13. Initialize all peripherals . 11
Figure 14. USART3 configuration . 12
Figure 15. Clock wizard pop-up . 12
Figure 16. System clock settings . 13
Figure 17. MCU memory subsystem (parameter settings) . 13
Figure 18. Enabling the CRC peripheral . 14
Figure 19. Additional software button . 15
Figure 20. Adding the X-CUBE-AI core component. 15
Figure 21. Add-on X-CUBE-AI applications . 15
Figure 22. Main X-CUBE-AI configuration panel . 17
Figure 23. X-CUBE-AI platform setting panel . 17
Figure 24. NN configuration wizard. 18
Figure 25. Insufficient RAM/Flash memory message box. 18
Figure 26. Uploaded and analyzed DL model. 19
Figure 27. Advanced settings. 20
Figure 28. Setting for external RAM . 20
Figure 29. Weight separate file . 21
Figure 30. Weight memory split . 21
Figure 31. Memory pool setting . 22
Figure 32. Extended options . 22
Figure 33. Custom layers . 23
Figure 34. Integrated C-model (runtime-view) . 23
Figure 35. Network before optimizations . 25
Figure 36. C graph of the generated code . 26
Figure 37. Layer information . 27
Figure 38. Memory usage . 28
Figure 39. Buffer details as tooltip . 29
Figure 40. Layer detailed information . 30
Figure 41. Validation status field. 31
Figure 42. Validate on desktop - log report. 31
Figure 43. Validation on target . 32
Figure 44. Main view with multiple networks . 33
Figure 45. Project settings view for IDE Code generator . 34
Figure 46. AI peripheral not fully configured . 35
Figure 47. Weight/bias compression . 36
Figure 48. Operation fusing . 36
Figure 49. Optimal activation/working buffer . 37
Figure 50. Validation flow overview. 37
Figure 51. Validation on target . 38
Figure 52. Representative dataset . 39

UM2526
List of figures

UM2526 - Rev 8 page 67/69

Figure 53. Example with the function pack for the computer vision . 40
Figure 54. MCU integration model and view. 41
Figure 55. System run-time information - Keil® IDE. 45
Figure 56. System run-time information - Atollic IDE . 46
Figure 57. C-model network information . 46
Figure 58. C-model run-time performance . 47
Figure 59. C-model run-time performance with heap and stack checking . 47
Figure 60. Host COM port selector for validation on device . 48
Figure 61. System runtime information . 48
Figure 62. C-model runtime performance . 49
Figure 63. Layer-by-layer results - Validation on target . 49
Figure 64. Final report for validation on target . 50
Figure 65. AI valid - Initial log. 51
Figure 66. Linker options to enable the heap monitor . 56
Figure 67. Direct menu access to in-package documentation . 58
Figure 68. In-package documentation access through X-CUBE-AI modes (1 of 2) . 59
Figure 69. In-package documentation access through X-CUBE-AI modes (2 of 2) . 59
Figure 70. In-package documentation index. 60

UM2526
List of figures

UM2526 - Rev 8 page 68/69

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2022 STMicroelectronics – All rights reserved

UM2526

UM2526 - Rev 8 page 69/69

http://www.st.com/trademarks

	Introduction
	1 General information
	1.1 What is STM32Cube?
	1.2 How does X-CUBE-AI complement STM32Cube?
	1.3 X-CUBE-AI core engine
	1.4 STM32CubeMX extension
	1.5 Acronyms, abbreviations, and definitions
	1.6 Prerequisites
	1.7 License

	2 Installing X-CUBE-AI
	3 Starting a new STM32 AI project
	3.1 MCU and board selector
	3.2 Hardware and software platform settings
	3.2.1 Increase or set the CPU and system clock frequency
	3.2.2 Set the MCU memory subsystem
	3.2.3 CRC

	4 X-CUBE-AI configuration wizard
	4.1 Adding the X-CUBE-AI component
	4.2 Enabling the X-CUBE-AI component
	4.3 Uploading a pretrained DL model file
	4.4 Advanced settings
	4.5 Dimensioning information report
	4.5.1 CPU cycles/MACC?
	4.5.2 Generated C-model graph representation

	4.6 Validating the generated C model
	4.7 Adding a new DL model

	5 Generating, building and programming
	5.1 Generating the IDE project
	5.2 Building and programming

	6 X-CUBE-AI internals
	6.1 Graph flow and memory layout optimizer
	6.2 Validation engine

	7 Generated STM32 NN library
	7.1 Firmware integration
	7.2 Library source tree view
	7.3 Multi-network inference API
	7.4 Re-entrance and thread safety considerations
	7.5 Code and data placement considerations
	7.6 Debug considerations

	8 Embedded inference client API
	9 AI system performance application
	9.1 System run-time information
	9.2 Embedded C-model network information
	9.3 Embedded C-model run-time performance

	10 AI validation application
	10.1 System runtime information
	10.2 Embedded C-model runtime performance
	10.3 Layer-by-layer runtime performance
	10.4 Final result for validation on target
	10.5 Returned error during the connection
	10.5.1 Error: no connected board, invalid firmware, or board restart needed
	10.5.2 Error: network_name is not a valid network
	10.5.3 Error: the embedded STM32 model does not match the C model

	11 AI template application
	12 Supported toolboxes and layers for Deep Learning
	13 Error handling
	14 FAQs
	14.1 Log files for debug purpose?
	14.2 Unable to compile file arm_dot_prod_f32.c
	14.3 Used heap or stack: disabled or not yet supported
	14.4 Why is used heap always zero?
	14.5 Formatted floating-point numbers are empty for a GCC-based project
	14.6 CPU cycles/MACC?
	14.7 Is it necessary to enable or configure a TIMER peripheral?
	14.8 How to update only the exported NN library in my generated project?
	14.9 Is it possible to export an NN library for a non-STM32CubeMX-based project?
	14.10 Command-line interface?

	15 References and documentation
	15.1 References used in this user manual
	15.2 Access to X-CUBE-AI in-package documentation

	Revision history
	Contents
	List of tables
	List of figures

